1887

Abstract

Background:

Population samples show bacterial genomes can be divided into a core of ubiquitous genes and accessory genes that are present in a fraction of isolates. The ecological significance of this variation in gene content remains unclear. However, microbiologists agree that a bacterial species should be ‘genomically coherent’, even though there is no consensus on how this should be determined.

Results:

We use a parsimonious model combining diversification in both the core and accessory genome, including mutation, homologous recombination (HR) and horizontal gene transfer (HGT) introducing new loci, to produce a population of interacting clusters of strains with varying genome content. New loci introduced by HGT may then be transferred on by HR. The model fits well to a systematic population sample of 616 pneumococcal genomes, capturing the major features of the population structure with parameter values that agree well with empirical estimates.

Conclusions:

The model does not include explicit selection on individual genes, suggesting that crude comparisons of gene content may be a poor predictor of ecological function. We identify a clearly divergent subpopulation of pneumococci that are inconsistent with the model and may be considered genomically incoherent with the rest of the population. These strains have a distinct disease tropism and may be rationally defined as a separate species. We also find deviations from the model that may be explained by recent population bottlenecks or spatial structure.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the source is credited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000038
2015-11-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/1/5/mgen000038.html?itemId=/content/journal/mgen/10.1099/mgen.0.000038&mimeType=html&fmt=ahah

References

  1. Baltrus D. A. 2013; Exploring the costs of horizontal gene transfer. Trends Ecol Evol 28:489–495 [View Article][PubMed]
    [Google Scholar]
  2. Baumdicker F., Hess W. R., Pfaffelhuber P. 2012; The infinitely many genes model for the distributed genome of bacteria. Genome Biol Evol 4:443–456 [View Article][PubMed]
    [Google Scholar]
  3. Chewapreecha C., Harris S. R., Croucher N. J., Turner C., Marttinen P., Cheng L., Pessia A., Aanensen D. M., Mather A. E., other authors. 2014; Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet 46:305–309 [View Article][PubMed]
    [Google Scholar]
  4. Collins R. E., Higgs P. G. 2012; Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol Biol Evol 29:3413–3425 [View Article][PubMed]
    [Google Scholar]
  5. Croucher N. J., Finkelstein J. A., Pelton S. I., Mitchell P. K., Lee G. M., Parkhill J., Bentley S. D., Hanage W. P., Lipsitch M. 2013; Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet 45:656–663 [View Article][PubMed]
    [Google Scholar]
  6. Croucher N. J., Coupland P. G., Stevenson A. E., Callendrello A., Bentley S. D., Hanage W. P. 2014; Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun 5:5471 [CrossRef]
    [Google Scholar]
  7. Doroghazi J. R., Buckley D. H. 2011; A model for the effect of homologous recombination on microbial diversification. Genome Biol Evol 3:1349–1356 [View Article][PubMed]
    [Google Scholar]
  8. Fraser C., Hanage W. P., Spratt B. G. 2005; Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci U S A 102:1968–1973 [View Article][PubMed]
    [Google Scholar]
  9. Fraser C., Hanage W. P., Spratt B. G. 2007; Recombination and the nature of bacterial speciation. Science 315:476–480 [View Article][PubMed]
    [Google Scholar]
  10. Fraser C., Alm E. J., Polz M. F., Spratt B. G., Hanage W. P. 2009; The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746 [View Article][PubMed]
    [Google Scholar]
  11. Gouriéroux C., Monfort A. 1997 Simulation-based Econometric Methods Oxford: Oxford University Press; [CrossRef]
    [Google Scholar]
  12. Gutmann M. U., Corander J. 2015; Bayesian optimization for likelihood-free inference of simulator-based statistical models. Journal of Machine Learning Research in press arXiv:1501.03291
    [Google Scholar]
  13. Haegeman B., Weitz J. S. 2012; A neutral theory of genome evolution and the frequency distribution of genes. BMC Genomics 13:196 [View Article][PubMed]
    [Google Scholar]
  14. Higgs P. G., Derrida B. 1992; Genetic distance and species formation in evolving populations. J Mol Evol 35:454–465 [View Article][PubMed]
    [Google Scholar]
  15. Knöppel A., Lind P. A., Lustig U., Näsvall J., Andersson D. I. 2014; Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol Biol Evol 31:1220–1227 [View Article][PubMed]
    [Google Scholar]
  16. Lobkovsky A. E., Wolf Y. I., Koonin E. V. 2013; Gene frequency distributions reject a neutral model of genome evolution. Genome Biol Evol 5:233–242 [View Article][PubMed]
    [Google Scholar]
  17. Majewski J., Zawadzki P., Pickerill P., Cohan F. M., Dowson C. G. 2000; Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 182:1016–1023 [View Article][PubMed]
    [Google Scholar]
  18. McFadden D. 1989; A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica 57:995–1026 [View Article]
    [Google Scholar]
  19. Pakes A., Pollard D. 1989; Simulation and the asymptotics of optimization 262 estimators. Econometrica 57:1027–1057 [View Article]
    [Google Scholar]
  20. Paradis E., Claude J., Strimmer K. 2004; ape: analyses of phylogenetics and evolution in r language. Bioinformatics 20:289–290 [View Article][PubMed]
    [Google Scholar]
  21. Perna N. T., Plunkett G. III, Burland V., Mau B., Glasner J. D., Rose D. J., Mayhew G. F., Evans P. S., Gregor J., other authors. 2001; Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533 [View Article][PubMed]
    [Google Scholar]
  22. Rasmussen C. E., Williams C. K. I. 2006 Gaussian Processes for Machine Learning Cambridge, MA: MIT Press;
    [Google Scholar]
  23. Shapiro B. J., Polz M. F. 2014; Ordering microbial diversity into ecologically and genetically cohesive units. Trends in Microbiology 22:235–247 [CrossRef]
    [Google Scholar]
  24. Tatusov R. L., Koonin E. V., Lipman D. J. 1997; A genomic perspective on protein families. Science 278:631–637 [View Article][PubMed]
    [Google Scholar]
  25. Touchon M., Hoede C., Tenaillon O., Barbe V., Baeriswyl S., Bidet P., Bingen E., Bonacorsi S., Bouchier C., other authors. 2009; Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344 [View Article][PubMed]
    [Google Scholar]
  26. Vogan A. A., Higgs P. G. 2011; The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biol Direct 6:1 [View Article][PubMed]
    [Google Scholar]
  27. Vulić M., Dionisio F., Taddei F., Radman M. 1997; Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A 94:9763–9767 [View Article][PubMed]
    [Google Scholar]
  28. Wood S. N. 2010; Statistical inference for noisy nonlinear ecological dynamic systems. Nature 466:1102–1104 [View Article][PubMed]
    [Google Scholar]
  29. Zawadzki P., Roberts M. S., Cohan F. M. 1995; The log-linear relationship between sexual isolation and sequence divergence in Bacillus transformation is robust. Genetics 140:917–932 7672591
    [Google Scholar]
  30. Marttinen, P., Croucher, N. J., Gutmann, M. U., Corander, J. & Hanage, W. P. (2015). Figshare. http://figshare.com/s/6471c982669011e58c4806ec4b8d1f61
  31. Marttinen, P., Croucher, N. J., Gutmann, M. U., Corander, J. & Hanage, W. P. (2015). Figshare. http://figshare.com/s/c70dd5e0669011e59ff906ec4bbcf141
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000038
Loading
/content/journal/mgen/10.1099/mgen.0.000038
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error