1887

Abstract

Enterohaemorrhagic Escherichia coli (EHEC) O157 is a zoonotic pathogen for which colonization of cattle and virulence in humans is associated with multiple horizontally acquired genes, the majority present in active or cryptic prophages. Our understanding of the evolution and phylogeny of EHEC O157 continues to develop primarily based on core genome analyses; however, such short-read sequences have limited value for the analysis of prophage content and its chromosomal location. In this study, we applied Single Molecule Real Time (SMRT) sequencing, using the Pacific Biosciences long-read sequencing platform, to isolates selected from the main sub-clusters of this clonal group. Prophage regions were extracted from these sequences and from published reference strains. Genome position and prophage diversity were analysed along with genetic content. Prophages could be assigned to clusters, with smaller prophages generally exhibiting less diversity and preferential loss of structural genes. Prophages encoding Shiga toxin (Stx) 2a and Stx1a were the most diverse, and more variable compared to prophages encoding Stx2c, further supporting the hypothesis that Stx2c-prophage integration was ancestral to acquisition of other Stx types. The concept that phage type (PT) 21/28 (Stx2a+, Stx2c+) strains evolved from PT32 (Stx2c+) was supported by analysis of strains with excised Stx-encoding prophages. Insertion sequence elements were over-represented in prophage sequences compared to the rest of the genome, showing integration in key genes such as stx and an excisionase, the latter potentially acting to capture the bacteriophage into the genome. Prophage profiling should allow more accurate prediction of the pathogenic potential of isolates.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000096
2016-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/12/mgen000096.html?itemId=/content/journal/mgen/10.1099/mgen.0.000096&mimeType=html&fmt=ahah

References

  1. Akashi S., Joh K., Tsuji A., Ito H., Hoshi H., Hayakawa T., Ihara J., Abe T., Hatori M. et al. 1994; A severe outbreak of haemorrhagic colitis and haemolytic uraemic syndrome associated with Escherichia coli 0157 H7 in Japan. Eur J Pediatr 153:650–655[PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  3. Anton B., Mongodin E., Agrawal S., Fomenkov A., Byrd D., Roberts R., Raleigh E. 2015; Complete genome sequence of ER2796, a DNA methyltransferase-deficient strain of Escherichia coli K-12. PLoS One 10:e0127446 [View Article][PubMed]
    [Google Scholar]
  4. Asadulghani M., Ogura Y., Ooka T., Itoh T., Sawaguchi A., Iguchi A., Nakayama K., Hayashi T. 2009; The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 5:e1000408 [View Article][PubMed]
    [Google Scholar]
  5. Asano Y., Karasudani T., Tanaka H., Matsumoto J., Okada M., Nakamura K., Kondo H., Shinomiya H. 2013; Characterization of the Escherichia coli O157:H7 outbreak strain whose Shiga toxin 2 gene is inactivated by is 1203v insertion. Jpn J Infec Dis 66:201–206 [View Article]
    [Google Scholar]
  6. Bolger A. M., Lohse M., Usadel B. 2014; Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  7. Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T. L. 2009; blast+: architecture and applications. BMC Bioinformatics 10:421 [View Article][PubMed]
    [Google Scholar]
  8. Chin C. S., Alexander D. H., Marks P., Klammer A. A., Drake J., Heiner C., Clum A., Copeland A., Huddleston J. et al. 2013; Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569 [View Article][PubMed]
    [Google Scholar]
  9. Clawson M. L., Keen J. E., Smith T. P., Durso L. M., McDaneld T. G., Mandrell R. E., Davis M. A., Bono J. L. 2009; Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms. Genome Biol 10:R56 [View Article][PubMed]
    [Google Scholar]
  10. Contreras-Moreira B., Vinuesa P. 2013; GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79:7696–7701 [View Article][PubMed]
    [Google Scholar]
  11. Cowley L. A., Beckett S. J., Chase-Topping M., Perry N., Dallman T. J., Gally D. L., Jenkins C. 2015; Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages. BMC Genomics 16:271 [View Article][PubMed]
    [Google Scholar]
  12. Dallman T. J., Allison L., Gally D. L., Wain J., Ashton P. M., Petrovska L., Woolhouse M. E. J., Jenkins C., Byrne L. et al. 2015; Applying phylogenomics to understand the emergence of Shiga-toxin-producing Escherichia coli O157:H7 strains causing severe human disease in the UK. Microb Genom 1: [View Article]
    [Google Scholar]
  13. Eppinger M., Mammel M. K., Leclerc J. E., Ravel J., Cebula T. A. 2011; Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A 108:20142–20147 [View Article][PubMed]
    [Google Scholar]
  14. Hayashi T., Makino K., Ohnishi M., Kurokawa K., Ishii K., Yokoyama K., Han C. G., Ohtsubo E., Nakayama K. et al. 2001; Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22 [View Article][PubMed]
    [Google Scholar]
  15. Huang W., Sherman B. T., Lempicki R. A. 2009a; Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13 [View Article][PubMed]
    [Google Scholar]
  16. Huang W., Sherman B. T., Lempicki R. A. 2009b; Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57 [View Article][PubMed]
    [Google Scholar]
  17. Kaper J., Nataro J., Mobley H. 2004; Pathogenic Escherichia coli . Nat Rev Microbiol 2:123–140 [View Article][PubMed]
    [Google Scholar]
  18. Koren S., Harhay G. P., Smith T. P., Bono J. L., Harhay D. M., Mcvey S. D., Radune D., Bergman N. H., Phillippy A. M. 2013; Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 14:R101 [View Article][PubMed]
    [Google Scholar]
  19. Li H., Durbin R. 2010; Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595 [View Article][PubMed]
    [Google Scholar]
  20. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. 1000 Genome Project Data Processing Subgroup 2009; The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  21. Luo H., Zhang C. T., Gao F. 2014; Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes. Front Microbiol 5:482 [View Article][PubMed]
    [Google Scholar]
  22. Lynch M. F., Tauxe R. V, Hedberg C. W. 2009; The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137:307–315 [View Article][PubMed]
    [Google Scholar]
  23. Manning S. D., Motiwala A. S., Springman A. C., Qi W., Lacher D. W., Ouellette L. M., Mladonicky J. M., Somsel P., Rudrik J. T. et al. 2008; Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci U S A 105:4868–4873 [View Article][PubMed]
    [Google Scholar]
  24. Marder E. P., Garman K. N., Ingram L. A., Dunn J. R. 2014; Multistate outbreak of Escherichia coli O157:H7 associated with bagged salad. Foodborne Pathog Dis 11:593–595 [View Article][PubMed]
    [Google Scholar]
  25. Matthews L., Reeve R., Gally D. L., Low J. C., Woolhouse M. E., McAteer S. P., Locking M. E., Chase-Topping M. E., Haydon D. T. et al. 2013; Predicting the public health benefit of vaccinating cattle against Escherichia coli O157. Proc Natl Acad Sci U S A 110:16265–16270 [View Article][PubMed]
    [Google Scholar]
  26. McCarthy A. 2010; Third generation DNA sequencing: Pacific Biosciences' single molecule real time technology. Chem Biol 17:675–676 [View Article][PubMed]
    [Google Scholar]
  27. McKenna A., Hanna M., Banks E., Sivachenko A., Cibulskis K., Kernytsky A., Garimella K., Altshuler D., Gabriel S. et al. 2010; The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303 [View Article][PubMed]
    [Google Scholar]
  28. Merlin C., McAteer S., Masters M. 2002; Tools for characterization of Escherichia coli genes of unknown function. J Bacteriol 184:4573–4581 [View Article][PubMed]
    [Google Scholar]
  29. Mikheyev A. S., Tin M. M. 2014; A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour 14:1097–1102 [View Article][PubMed]
    [Google Scholar]
  30. Naylor S. W., Roe A. J., Nart P., Spears K., Smith D. G. E., Low J. C., Gally D. L. 2005; Escherichia coli O157: H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiology 151:2773–2781 [View Article][PubMed]
    [Google Scholar]
  31. Ogura Y., Ooka T., Iguchi A., Toh H., Asadulghani M., Oshima K., Kodama T., Abe H., Nakayama K. et al. 2009; Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli . Proc Natl Acad Sci 106:17939–17944 [View Article]
    [Google Scholar]
  32. Ogura Y., Mondal S. I, Islam M. R., Mako T., Arisawa K., Katsura K., Ooka T., Gotoh Y., Murase K. et al. 2015; The Shiga toxin 2 production level in enterohemorrhagic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage. Sci Rep 5:16663 [View Article][PubMed]
    [Google Scholar]
  33. Ohnishi M., Kurokawa K., Hayashi T. 2001; Diversification of Escherichia coli genomes: are bacteriophages the major contributors?. Trends Microbiol 9:481–485 [View Article][PubMed]
    [Google Scholar]
  34. Ooka T., Ogura Y., Asadulghani M., Ohnishi M., Nakayama K., Terajima J., Watanabe H., Hayashi T. 2009; Inference of the impact of insertion sequence (IS) elements on bacterial genome diversification through analysis of small-size structural polymorphisms in Escherichia coli O157 genomes. Genome Res 19:1809–1816 [View Article][PubMed]
    [Google Scholar]
  35. Park D., Stanton E., Ciezki K., Parrell D., Bozile M., Pike D., Forst S. A., Jeong K. C., Ivanek R. et al. 2013; Evolution of the Stx2-encoding prophage in persistent bovine Escherichia coli O157:H7 strains. Appl Environ Microbiol 79:1563–1572 [View Article]
    [Google Scholar]
  36. Perna N., Plunkett Iii G., Burland V., Mau B., Glasner J., Rose D., Mayhew G., Evans P., Gregor J. et al. 2001; Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533 [View Article][PubMed]
    [Google Scholar]
  37. Rice P., Longden I., Bleasby A. 2000; EMBOSS: the European Molecular Biology Open Software Suite (2000). Trends Genet 16:276–277 [View Article][PubMed]
    [Google Scholar]
  38. Scheutz F., Teel L. D., Beutin L., Piérard D., Buvens G., Karch H., Mellmann A., Caprioli A., Tozzoli R. et al. 2012; Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50:2951–2963 [View Article][PubMed]
    [Google Scholar]
  39. Seemann T. 2014; Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  40. Shaikh N., Tarr P. I. 2003; Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. J Bacteriol 185:3596–3605 [View Article][PubMed]
    [Google Scholar]
  41. Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. 2006; ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36 [View Article][PubMed]
    [Google Scholar]
  42. Stamatakis A. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  43. Stewart A. C., Osborne B., Read T. D. 2009; DIYA: a bacterial annotation pipeline for any genomics lab. Bioinformatics 25:962–963 [View Article][PubMed]
    [Google Scholar]
  44. Sullivan M. J., Petty N. K., Beatson S. A. 2011; Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010 [View Article][PubMed]
    [Google Scholar]
  45. Tarr P., Gordon C., Chandler W. 2005; Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365:1073–1086 [View Article][PubMed]
    [Google Scholar]
  46. Tobe T., Beatson S. A., Taniguchi H., Abe H., Bailey C. M., Fivian A., Younis R., Matthews S., Marches O. et al. 2006; An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A 103:14941–14946 [View Article][PubMed]
    [Google Scholar]
  47. Toro M., Rump L. V, Cao G., Meng J., Brown E. W., Gonzalez-Escalona N. 2015; Simultaneous presence of insertion sequence excision enhancer and insertion sequence IS629 correlates with increased diversity and virulence in Shiga toxin-producing Escherichia coli . J Clin Microbiol 53:3466–3473 [View Article][PubMed]
    [Google Scholar]
  48. Tree J. J., Wolfson E. B., Wang D., Roe A. J., Gally D. L. 2009; Controlling injection: regulation of type III secretion in enterohaemorrhagic Escherichia coli . Trends Microbiol 17:361–370 [View Article][PubMed]
    [Google Scholar]
  49. Tyler J. S., Beeri K., Reynolds J. L., Alteri C. J., Skinner K. G., Friedman J. H., Eaton K. A., Friedman D. I 2013; Prophage induction is enhanced and required for renal disease and lethality in an EHEC mouse model. PLoS Pathog 9:e1003236 [View Article][PubMed]
    [Google Scholar]
  50. Wickham H. 2009 Ggplot2: Elegant Graphics for Data Analysis New York: Springer-Verlag;
    [Google Scholar]
  51. Yin S., Rusconi B., Sanjar F., Goswami K., Xiaoli L., Eppinger M., Dudley E. G. 2015; Escherichia coli O157:H7 strains harbor at least three distinct sequence types of Shiga toxin 2a-converting phages. BMC Genomics 16:733 [View Article][PubMed]
    [Google Scholar]
  52. Zhang Y., Laing C., Steele M., Ziebell K., Johnson R., Benson A. K., Taboada E., Gannon V. P. J. 2007; Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 8:121 [View Article][PubMed]
    [Google Scholar]
  53. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S. 2011; phast: a fast phage search tool. Nucleic Acids Res 39:W347–W352 [View Article][PubMed]
    [Google Scholar]
  54. Brittnacher, M., Jacobs, M., Zhou, Y., Chang, J., Fong, C., Gillett, W., Haugen, E., Hayden, H., Kulasekara, B., Larson Freeman, T., Radey, M., Rohmer, L., Sims, E., Wu, Z., Whittam, T., Kaul, R., Olson, M. V. & Miller, S. I. NCBI Reference Sequence NC_013008 2016
  55. Cowley, C. A. GenBank CP015832 2016
  56. Dallman, T. J., Byrne, L., Ahston, P. M., Cowley, L. A., Perry, N. T., Petrovska L., Ellis, R. J., Elson, R., Underwood, A., Green, J., Hanage, W. P., Jenkins, C., Grant, K. & Wain, J. BioProject PRJNA248042 2015
  57. Eppinger, M., Sebastian, Y. & Ravel, J. NCBI Reference Sequence NC_011353 2016
  58. Katani, R., Cote, R., Raygoza Garay, J. A., Li, L., Arthur, T. M., DebRoy, C., Mwangi, M. M. & Kapur, V. GenBank CP010304 2014
  59. Latif, H., Aziz, R. K., Charusanti, P. & Palsson, B. O. GenBank CP008957 2014
  60. Makino, K., Yokoyama, K., Kubota, Y., Yutsudo, C. H., Kimura, S., Kurokawa, K., Ishii, K., Hattori, M., Tatsuno, I., Abe, H., Iida, T., Yamamoto, K., Onishi, M., Hayashi, T., Yasunaga, T., Honda, T., Sasakawa, C. & Shinagawa, H. NCBI Reference Sequence NC_002695 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000096
Loading
/content/journal/mgen/10.1099/mgen.0.000096
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error