1887

Abstract

The Streptococcus mutans Cid/Lrg system is central to the physiology of this cariogenic organism, affecting oxidative stress resistance, biofilm formation and competence. Previous transcriptome analyses of lytS (responsible for the regulation of lrgAB expression) and cidB mutants have revealed pleiotropic effects on carbohydrate metabolism and stress resistance genes. In this study, it was found that an lrgAB mutant, previously shown to have diminished aerobic and oxidative stress growth, was also much more growth impaired in the presence of heat and vancomycin stresses, relative to wild-type, lrgA and lrgB mutants. To obtain a more holistic picture of LrgAB and its involvement in stress resistance, RNA sequencing and bioinformatics analyses were used to assess the transcriptional response of wild-type and isogenic lrgAB mutants under anaerobic (control) and stress-inducing culture conditions (aerobic, heat and vancomycin). Hierarchical clustering and principal components analyses of all differentially expressed genes revealed that the most distinct gene expression profiles between S. mutans UA159 and lrgAB mutant occurred during aerobic and high-temperature growth. Similar to previous studies of a cidB mutant, lrgAB stress transcriptomes were characterized by a variety of gene expression changes related to genomic islands, CRISPR-C as systems, ABC transporters, competence, bacteriocins, glucosyltransferases, protein translation, tricarboxylic acid cycle, carbohydrate metabolism/storage and transport. Notably, expression of lrgAB was upregulated in the wild-type strain under all three stress conditions. Collectively, these results demonstrate that mutation of lrgAB alters the transcriptional response to stress, and further support the idea that the Cid/Lrg system acts to promote cell homeostasis in the face of environmental stress.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000104
2017-02-28
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/2/mgen000104.html?itemId=/content/journal/mgen/10.1099/mgen.0.000104&mimeType=html&fmt=ahah

References

  1. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986; 50:353–380[PubMed]
    [Google Scholar]
  2. Moye ZD, Zeng L, Burne RA. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans . J Oral Microbiol 2014; 6: [View Article][PubMed]
    [Google Scholar]
  3. Lemos JA, Burne RA. A model of efficiency: stress tolerance by Streptococcus mutans . Microbiology 2008; 154:3247–3255 [View Article][PubMed]
    [Google Scholar]
  4. Ahn SJ, Qu MD, Roberts E, Burne RA, Rice KC et al. Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance. BMC Microbiol 2012; 12:187 [View Article][PubMed]
    [Google Scholar]
  5. Ahn SJ, Rice KC. Understanding the Streptococcus mutans Cid/Lrg System through CidB function. Appl Environ Microbiol 2016; 82:6189–6203 [View Article][PubMed]
    [Google Scholar]
  6. Ahn SJ, Rice KC, Oleas J, Bayles KW, Burne RA et al. The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals. Microbiology 2010; 156:3136–3147 [View Article][PubMed]
    [Google Scholar]
  7. Bayles KW. Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 2014; 12:63–69 [View Article][PubMed]
    [Google Scholar]
  8. Bayles KW. The biological role of death and lysis in biofilm development. Nat Rev Microbiol 2007; 5:721–726 [View Article][PubMed]
    [Google Scholar]
  9. Bayles KW. Are the molecular strategies that control apoptosis conserved in bacteria?. Trends Microbiol 2003; 11:306–311 [View Article][PubMed]
    [Google Scholar]
  10. Groicher KH, Firek BA, Fujimoto DF, Bayles KW. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol 2000; 182:1794–1801 [View Article][PubMed]
    [Google Scholar]
  11. Rice KC, Firek BA, Nelson JB, Yang SJ, Patton TG et al. The Staphylococcus aureus cidAB operon: evaluation of its role in regulation of murein hydrolase activity and penicillin tolerance. J Bacteriol 2003; 185:2635–2643 [View Article][PubMed]
    [Google Scholar]
  12. Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D et al. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 2009; 4:e5822 [View Article][PubMed]
    [Google Scholar]
  13. Moormeier DE, Endres JL, Mann EE, Sadykov MR, Horswill AR et al. Use of microfluidic technology to analyze gene expression during Staphylococcus aureus biofilm formation reveals distinct physiological niches. Appl Environ Microbiol 2013; 79:3413–3424 [View Article][PubMed]
    [Google Scholar]
  14. Patton TG, Rice KC, Foster MK, Bayles KW. The Staphylococcus aureus cidC gene encodes a pyruvate oxidase that affects acetate metabolism and cell death in stationary phase. Mol Microbiol 2005; 56:1664–1674 [View Article][PubMed]
    [Google Scholar]
  15. Ranjit DK, Endres JL, Bayles KW. Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties. J Bacteriol 2011; 193:2468–2476 [View Article][PubMed]
    [Google Scholar]
  16. Sharma-Kuinkel BK, Mann EE, Ahn JS, Kuechenmeister LJ, Dunman PM et al. The Staphylococcus aureus LytSR two-component regulatory system affects biofilm formation. J Bacteriol 2009; 191:4767–4775 [View Article][PubMed]
    [Google Scholar]
  17. Ahn JS, Chandramohan L, Liou LE, Bayles KW. Characterization of CidR-mediated regulation in Bacillus anthracis reveals a previously undetected role of S-layer proteins as murein hydrolases. Mol Microbiol 2006; 62:1158–1169 [View Article][PubMed]
    [Google Scholar]
  18. Chandramohan L, Ahn JS, Weaver KE, Bayles KW. An overlap between the control of programmed cell death in Bacillus anthracis and sporulation. J Bacteriol 2009; 191:4103–4110 [View Article][PubMed]
    [Google Scholar]
  19. Moormeier DE, Bose JL, Horswill AR, Bayles KW. Temporal and stochastic control of Staphylococcus aureus biofilm development. MBio 2014; 5:e01341-14 [View Article][PubMed]
    [Google Scholar]
  20. Rice KC, Nelson JB, Patton TG, Yang SJ, Bayles KW et al. Acetic acid induces expression of the Staphylococcus aureus cidABC and lrgAB murein hydrolase regulator operons. J Bacteriol 2005; 187:813–821 [View Article][PubMed]
    [Google Scholar]
  21. Rice KC, Patton T, Yang SJ, Dumoulin A, Bischoff M et al. Transcription of the Staphylococcus aureus cid and lrg murein hydrolase regulators is affected by sigma factor B. J Bacteriol 2004; 186:3029–3037 [View Article][PubMed]
    [Google Scholar]
  22. Ahn SJ, Wen ZT, Burne RA. Effects of oxygen on virulence traits of Streptococcus mutans . J Bacteriol 2007; 189:8519–8527 [View Article][PubMed]
    [Google Scholar]
  23. Brunskill EW, Bayles KW. Identification of LytSR-regulated genes from Staphylococcus aureus . J Bacteriol 1996; 178:5810–5812 [View Article][PubMed]
    [Google Scholar]
  24. Serbanescu MA, Cordova M, Krastel K, Flick R, Beloglazova N et al. Role of the Streptococcus mutans CRISPR-Cas systems in immunity and cell physiology. J Bacteriol 2015; 197:749–761 [View Article][PubMed]
    [Google Scholar]
  25. Chattoraj P, Banerjee A, Biswas S, Biswas I. ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance. J Bacteriol 2010; 192:1312–1323 [View Article][PubMed]
    [Google Scholar]
  26. Caufield PW, Shah G. Transformation of naturally competent Streptococcus mutans with replicative and non-replicative Tn916-containing plasmids: implications for a mechanism of transposition. Dev Biol Stand 1995; 85:19–25[PubMed]
    [Google Scholar]
  27. Lau PC, Sung CK, Lee JH, Morrison DA, Cvitkovitch DG et al. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 2002; 49:193–205 [View Article][PubMed]
    [Google Scholar]
  28. Ahn SJ, Burne RA. Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans . J Bacteriol 2007; 189:6293–6302 [View Article][PubMed]
    [Google Scholar]
  29. Zeng L, Burne RA. Sucrose- and fructose-specific effects on the transcriptome of Streptococcus mutans, as determined by RNA sequencing. Appl Environ Microbiol 2015; 82:146–156 [View Article][PubMed]
    [Google Scholar]
  30. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26:139–140 [View Article][PubMed]
    [Google Scholar]
  31. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5:R80 [View Article][PubMed]
    [Google Scholar]
  32. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30:207–210 [View Article][PubMed]
    [Google Scholar]
  33. Chen H, Boutros PC. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 2011; 12:35 [View Article][PubMed]
    [Google Scholar]
  34. Huang Daw, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4:44–57 [View Article][PubMed]
    [Google Scholar]
  35. Huang Daw, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37:1–13 [View Article][PubMed]
    [Google Scholar]
  36. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011; 6:e21800 [View Article][PubMed]
    [Google Scholar]
  37. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2014; 42:D581–D591 [View Article][PubMed]
    [Google Scholar]
  38. Uniprot C. UniProt: a hub for protein information. Nucleic Acids Res 2015; 43:D204–D212 [View Article][PubMed]
    [Google Scholar]
  39. Chen PM, Chen YY, Yu SL, Sher S, Lai CH et al. Role of GlnR in acid-mediated repression of genes encoding proteins involved in glutamine and glutamate metabolism in Streptococcus mutans . Appl Environ Microbiol 2010; 76:2478–2486 [View Article][PubMed]
    [Google Scholar]
  40. Wu C, Cichewicz R, Li Y, Liu J, Roe B et al. Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance. Appl Environ Microbiol 2010; 76:5815–5826 [View Article][PubMed]
    [Google Scholar]
  41. Kajfasz JK, Rivera-Ramos I, Scott-Anne K, Gregoire S, Abranches J et al. Transcription of oxidative stress genes is directly activated by SpxA1 and, to a Lesser Extent, by SpxA2 in Streptococcus mutans . J Bacteriol 2015; 197:2160–2170 [View Article][PubMed]
    [Google Scholar]
  42. Yamamoto Y, Kamio Y, Higuchi M. Cloning, nucleotide sequence, and disruption of Streptococcus mutans glutathione reductase gene (gor). Biosci Biotechnol Biochem 1999; 63:1056–1062 [View Article][PubMed]
    [Google Scholar]
  43. Lemos JA, Quivey RG, Koo H, Abranches J. Streptococcus mutans: a new Gram-positive paradigm?. Microbiology 2013; 159:436–445 [View Article][PubMed]
    [Google Scholar]
  44. Senadheera D, Cvitkovitch DG. Quorum sensing and biofilm formation by Streptococcus mutans . Adv Exp Med Biol 2008; 631:178–188 [View Article][PubMed]
    [Google Scholar]
  45. Sherrill C, Fahey RC. Import and metabolism of glutathione by Streptococcus mutans . J Bacteriol 1998; 180:1454–1459[PubMed]
    [Google Scholar]
  46. Bartsch RG, Newton GL, Sherrill C, Fahey RC. Glutathione amide and its perthiol in anaerobic sulfur bacteria. J Bacteriol 1996; 178:4742–4746 [View Article][PubMed]
    [Google Scholar]
  47. Zheng X, Zhang K, Zhou X, Liu C, Li M et al. Involvement of gshAB in the interspecies competition within oral biofilm. J Dent Res 2013; 92:819–824 [View Article][PubMed]
    [Google Scholar]
  48. Crepps SC, Fields EE, Galan D, Corbett JP, von Hasseln ER et al. The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response. Mol Oral Microbiol 2016; 31:526–539 [View Article][PubMed]
    [Google Scholar]
  49. Galvão LC, Miller JH, Kajfasz JK, Scott-Anne K, Freires IA et al. Transcriptional and phenotypic characterization of novel Spx-regulated genes in Streptococcus mutans . PLoS One 2015; 10:e0124969 [View Article][PubMed]
    [Google Scholar]
  50. Waterhouse JC, Russell RR. Dispensable genes and foreign DNA in Streptococcus mutans . Microbiology 2006; 152:1777–1788 [View Article][PubMed]
    [Google Scholar]
  51. Lemos JA, Burne RA. Regulation and physiological significance of ClpC and ClpP in Sreptococcus mutans . J Bacteriol 2002; 184:6357–6366 [View Article][PubMed]
    [Google Scholar]
  52. Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature 2015; 526:55–61 [View Article][PubMed]
    [Google Scholar]
  53. van der Ploeg JR. Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology 2009; 155:1966–1976 [View Article][PubMed]
    [Google Scholar]
  54. Liu C, Niu Y, Zhou X, Zheng X, Wang S et al. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism. Sci Rep 2015; 5:12929 [View Article][PubMed]
    [Google Scholar]
  55. Griswold AR, Chen YY, Burne RA. Analysis of an agmatine deiminase gene cluster in Streptococcus mutans UA159. J Bacteriol 2004; 186:1902–1904 [View Article][PubMed]
    [Google Scholar]
  56. Griswold AR, Jameson-Lee M, Burne RA. Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159. J Bacteriol 2006; 188:834–841 [View Article][PubMed]
    [Google Scholar]
  57. Jayaraman GC, Penders JE, Burne RA. Transcriptional analysis of the Streptococcus mutans hrcA, grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification. Mol Microbiol 1997; 25:329–341 [View Article][PubMed]
    [Google Scholar]
  58. Jayaraman GC, Burne RA. DnaK expression in response to heat shock of Streptococcus mutans . FEMS Microbiol Lett 1995; 131:255–261 [View Article][PubMed]
    [Google Scholar]
  59. Senadheera MD, Guggenheim B, Spatafora GA, Huang YC, Choi J et al. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 2005; 187:4064–4076 [View Article][PubMed]
    [Google Scholar]
  60. Senadheera DB, Cordova M, Ayala EA, Chávez de Paz LE, Singh K et al. Regulation of bacteriocin production and cell death by the VicRK signaling system in Streptococcus mutans . J Bacteriol 2012; 194:1307–1316 [View Article][PubMed]
    [Google Scholar]
  61. Paik S, Brown A, Munro CL, Cornelissen CN, Kitten T et al. The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol 2003; 185:5967–5975 [View Article][PubMed]
    [Google Scholar]
  62. O'Rourke KP, Shaw JD, Pesesky MW, Cook BT, Roberts SM et al. Genome-wide characterization of the SloR metalloregulome in Streptococcus mutans . J Bacteriol 2010; 192:1433–1443 [View Article][PubMed]
    [Google Scholar]
  63. Cook GM, Robson JR, Frampton RA, Mckenzie J, Przybilski R et al. Ribonucleases in bacterial toxin-antitoxin systems. Biochim Biophys Acta 2013; 1829:523–531 [View Article][PubMed]
    [Google Scholar]
  64. Ramisetty BC, Natarajan B, Santhosh RS. mazEF-mediated programmed cell death in bacteria: "what is this?". Crit Rev Microbiol 2015; 41:89–100 [View Article][PubMed]
    [Google Scholar]
  65. Erental A, Sharon I, Engelberg-Kulka H. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 2012; 10:e1001281 [View Article][PubMed]
    [Google Scholar]
  66. Shields RC, Burne RA. Growth of Streptococcus mutans in biofilms alters peptide signaling at the sub-population level. Front Microbiol 2016; 7:1075 [View Article][PubMed]
    [Google Scholar]
  67. Busuioc M, Buttaro BA, Piggot PJ. The pdh operon is expressed in a subpopulation of stationary-phase bacteria and is important for survival of sugar-starved Streptococcus mutans . J Bacteriol 2010; 192:4395–4402 [View Article][PubMed]
    [Google Scholar]
  68. Korithoski B, Lévesque CM, Cvitkovitch DG. Involvement of the detoxifying enzyme lactoylglutathione lyase in Streptococcus mutans aciduricity. J Bacteriol 2007; 189:7586–7592 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000104
Loading
/content/journal/mgen/10.1099/mgen.0.000104
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error