1887

Abstract

In Bacteria, a working consensus of species circumscription may have been reached and one of the most prominent criteria is high average nucleotide identity (ANI). ANI in effect groups strains that may recombine more or less frequently, depending on their biology, as opposed to rare interspecies gene transfer. For bacteriophages, which show various lifestyles, the nature of the fundamental natural unit, if it exists in a biological sense, is not well understood and defined. The approaches based on dot-plots are useful to group similar bacteriophages, yet are not quantitative and use arbitrarily set cut-offs. Here, we focus on lytic Myoviridae and test the ANI metric for group delineation. We show that ANI-based groups are in agreement with the International Committee on Taxonomy of Viruses (ICTV) classification and already established dot-plot groups, which are occasionally further refined owing to higher resolution of ANI analysis. Furthermore, these groups are separated among themselves by clear ANI discontinuities. Their members readily exchange core genes with each other while they do not with bacteriophages of other ANI groups, not even with the most similar. Thus, ANI-delineated groups may represent the natural units in lytic Myoviridae evolution with features that resemble those encountered in bacterial species.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000169
2018-03-27
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/3/mgen000169.html?itemId=/content/journal/mgen/10.1099/mgen.0.000169&mimeType=html&fmt=ahah

References

  1. Rosselló-Móra R, Amann R. Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article][PubMed]
    [Google Scholar]
  2. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006; 361:1929–1940 [View Article][PubMed]
    [Google Scholar]
  3. Konstantinidis KT, Rosselló-Móra R. Classifying the uncultivated microbial majority: a place for metagenomic data in the Candidatus proposal. Syst Appl Microbiol 2015; 38:223–230 [View Article][PubMed]
    [Google Scholar]
  4. Caro-Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ Microbiol 2012; 14:347–355 [View Article][PubMed]
    [Google Scholar]
  5. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  6. Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP. The bacterial species challenge: making sense of genetic and ecological diversity. Science 2009; 323:741–746 [View Article][PubMed]
    [Google Scholar]
  7. Caro-Quintero A, Deng J, Auchtung J, Brettar I, Höfle MG et al. Unprecedented levels of horizontal gene transfer among spatially co-occurring Shewanella bacteria from the Baltic Sea. Isme J 2011; 5:131–140 [View Article][PubMed]
    [Google Scholar]
  8. Shapiro BJ. How clonal are bacteria over time?. Curr Opin Microbiol 2016; 31:116–123 [View Article][PubMed]
    [Google Scholar]
  9. Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. Isme J 2009; 3:199–208 [View Article][PubMed]
    [Google Scholar]
  10. Fraser C, Hanage WP, Spratt BG. Recombination and the nature of bacterial speciation. Science 2007; 315:476–480 [View Article][PubMed]
    [Google Scholar]
  11. Ackermann HW. 5500 Phages examined in the electron microscope. Arch Virol 2007; 152:227–243 [View Article][PubMed]
    [Google Scholar]
  12. Lopes A, Tavares P, Petit MA, Guérois R, Zinn-Justin S. Automated classification of tailed bacteriophages according to their neck organization. BMC Genomics 2014; 15:1027 [View Article][PubMed]
    [Google Scholar]
  13. Adriaenssens EM, Edwards R, Nash JH, Mahadevan P, Seto D et al. Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology 2015; 477:144–154 [View Article][PubMed]
    [Google Scholar]
  14. Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM. Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 2008; 159:406–414 [View Article][PubMed]
    [Google Scholar]
  15. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P et al. Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 2009; 9:224 [View Article][PubMed]
    [Google Scholar]
  16. Grose JH, Casjens SR. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 2014; 468:421–443 [View Article][PubMed]
    [Google Scholar]
  17. Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA et al. Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 2010; 397:119–143 [View Article][PubMed]
    [Google Scholar]
  18. Kwan T, Liu J, Dubow M, Gros P, Pelletier J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 2005; 102:5174–5179 [View Article][PubMed]
    [Google Scholar]
  19. Pope WH, Mavrich TN, Garlena RA, Guerrero-Bustamante CA, Jacobs-Sera D et al. Bacteriophages of Gordonia spp. display a spectrum of diversity and genetic relationships. MBio 2017; 8:e01069-17 [View Article][PubMed]
    [Google Scholar]
  20. Bolduc B, Jang HB, Doulcier G, You ZQ, Roux S et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria . PeerJ 2017; 5:e3243 [View Article][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Göker M. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 2017; 33:3396–3404 [View Article][PubMed]
    [Google Scholar]
  22. Hatfull GF, Hendrix RW. Bacteriophages and their genomes. Curr Opin Virol 2011; 1:298–303 [View Article][PubMed]
    [Google Scholar]
  23. Mavrich TN, Hatfull GF. Bacteriophage evolution differs by host, lifestyle and genome. Nat Microbiol 2017; 2:17112 [View Article][PubMed]
    [Google Scholar]
  24. Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recombination. Genetics 2006; 172:2665–2681 [View Article][PubMed]
    [Google Scholar]
  25. Zhao Y, Wu J, Yang J, Sun S, Xiao J et al. PGAP: pan-genomes analysis pipeline. Bioinformatics 2012; 28:416–418 [View Article][PubMed]
    [Google Scholar]
  26. Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. In Posada D. (editor) Bioinformatics for DNA Sequence Analysis Totowa, NJ: Humana Press; pp. 39–64
    [Google Scholar]
  27. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article][PubMed]
    [Google Scholar]
  28. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 2004; 20:289–290 [View Article][PubMed]
    [Google Scholar]
  29. Jombart T, Archer F, Schliep K, Kamvar Z, Harris R et al. apex: phylogenetics with multiple genes. Mol Ecol Resour 2017; 17:19–26 [View Article][PubMed]
    [Google Scholar]
  30. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006; 23:254–267 [View Article][PubMed]
    [Google Scholar]
  31. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article][PubMed]
    [Google Scholar]
  32. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article][PubMed]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  34. Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol J 2010; 7:292 [View Article][PubMed]
    [Google Scholar]
  35. Dykhuizen DE, Green L. Recombination in Escherichia coli and the definition of biological species. J Bacteriol 1991; 173:7257–7268 [View Article][PubMed]
    [Google Scholar]
  36. Feil EJ, Holmes EC, Bessen DE, Chan MS, Day NP et al. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci USA 2001; 98:182–187 [View Article][PubMed]
    [Google Scholar]
  37. Milkman R. Recombination and population structure in Escherichia coli . Genetics 1997; 146:745–750[PubMed]
    [Google Scholar]
  38. Wertz JE, Goldstone C, Gordon DM, Riley MA. A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 2003; 16:1236–1248 [View Article][PubMed]
    [Google Scholar]
  39. Leigh JW, Lapointe FJ, Lopez P, Bapteste E. Evaluating phylogenetic congruence in the post-genomic era. Genome Biol Evol 2011; 3:571–587 [View Article][PubMed]
    [Google Scholar]
  40. Holland B, Moulton V. Consensus networks: a method for visualising incompatibilities in collections of trees. In Algorithms in Bioinformatics Berlin, Heidelberg: Springer; pp. 165–176
    [Google Scholar]
  41. Holland BR, Huber KT, Moulton V, Lockhart PJ. Using consensus networks to visualize contradictory evidence for species phylogeny. Mol Biol Evol 2004; 21:1459–1461 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000169
Loading
/content/journal/mgen/10.1099/mgen.0.000169
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error