1887

Abstract

The vaginal microbiota, normally characterized by lactobacilli presence, is crucial for vaginal health. Members belonging to and species exert crucial protective functions against pathogens, although a total comprehension of factors that influence their dominance in healthy women is still lacking. Here we investigated the complete genome sequence and comprehensive phenotypic profile of strain BC5 and strain BC12, two vaginal strains featured by anti-bacterial and anti-viral activities. Phenotype microarray (PM) results revealed an improved capacity of BC5 to utilize different carbon sources as compared to BC12, although some specific carbon sources that can be associated to the human diet were only metabolized by BC12, i.e. uridine, amygdalin, tagatose. Additionally, the two strains were mostly distinct in the capacity to utilize the nitrogen sources under analysis. On the other hand, BC12 showed tolerance/resistance towards twice the number of stressors (i.e. antibiotics, toxic metals etc.) with respect to BC5. The divergent phenotypes observed in PM were supported by the identification in either BC5 or BC12 of specific genetic determinants that were found to be part of the core genome of each species. The PM results in combination with comparative genome data provide insights into the possible environmental factors and genetic traits supporting the predominance of either BC5 or BC12 in the vaginal niche, giving also indications for metabolic predictions at the species level.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000575
2021-06-07
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/6/mgen000575.html?itemId=/content/journal/mgen/10.1099/mgen.0.000575&mimeType=html&fmt=ahah

References

  1. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 2011; 108 Suppl 1:4680–4687 [View Article][PubMed]
    [Google Scholar]
  2. Parolin C, Marangoni A, Laghi L, Foschi C, Ñahui Palomino RA et al. Isolation of vaginal lactobacilli and characterization of anti-Candida activity. PLoS One 2015; 10:e0131220 [View Article][PubMed]
    [Google Scholar]
  3. Siroli L, Patrignani F, Serrazanetti DI, Parolin C, Ñahui Palomino RA et al. Determination of antibacterial and technological properties of vaginal lactobacilli for their potential application in dairy products. Front Microbiol 2017; 8:166 [View Article][PubMed]
    [Google Scholar]
  4. Ñahui Palomino RA, Zicari S, Vanpouille C, Vitali B, Margolis L. Vaginal lactobacillus inhibits HIV-1 replication in human tissues ex vivo. Front Microbiol 2017; 8:1–11
    [Google Scholar]
  5. Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G et al. Women and their microbes: the unexpected friendship. Trends Microbiol 2018; 26:16–32 [View Article][PubMed]
    [Google Scholar]
  6. Parolin C, Frisco G, Foschi C, Giordani B, Salvo M et al. Lactobacillus crispatus BC5 interferes with Chlamydia trachomatis infectivity through integrin modulation in cervical cells. Front Microbiol 2018; 9:2630 [View Article][PubMed]
    [Google Scholar]
  7. Ñahui Palomino RA, Vanpouille C, Laghi L, Parolin C, Melikov K et al. Extracellular vesicles from symbiotic vaginal lactobacilli inhibit HIV-1 infection of human tissues. Nat Commun 2019; 10:5656 [View Article][PubMed]
    [Google Scholar]
  8. van de Wijgert JHHM, Borgdorff H, Verhelst R, Crucitti T, Francis S et al. The vaginal microbiota: what have we learned after a decade of molecular characterization?. PLoS One 2014; 9:e105998 [View Article][PubMed]
    [Google Scholar]
  9. Nardini P, Ñahui Palomino RA, Parolin C, Laghi L, Foschi C et al. Lactobacillus crispatus inhibits the infectivity of Chlamydia trachomatis elementary bodies, in vitro study. Sci Rep 2016; 6:29024 [View Article][PubMed]
    [Google Scholar]
  10. Foschi C, Laghi L, Parolin C, Giordani B, Compri M et al. Novel approaches for the taxonomic and metabolic characterization of lactobacilli: integration of 16S rRNA gene sequencing with MALDI-TOF MS and 1H-NMR. PLoS One 2017; 12:e0172483 [View Article][PubMed]
    [Google Scholar]
  11. Calonghi N, Parolin C, Sartor G, Verardi L, Giordani B et al. Interaction of vaginal Lactobacillus strains with HeLa cells plasma membrane. Benef Microbes 2017; 8:625–633 [View Article][PubMed]
    [Google Scholar]
  12. Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UME et al. Temporal dynamics of the human vaginal microbiota. Sci Transl Med 2012; 4:132ra52 [View Article][PubMed]
    [Google Scholar]
  13. France MT, Mendes-soares H, Forney LJL. Iners reveal potential ecological drivers of community composition in the vagina. Appl Environ Microbiol 2016; 82:7063–7073
    [Google Scholar]
  14. Nunn KL, Forney LJ. Unraveling the dynamics of the human vaginal microbiome. Vol. 89, Yale Journal of Biology and Medicine 89 Yale Journal of Biology and Medicine Inc; 2016 pp 331–337
    [Google Scholar]
  15. Bochner BR, Gadzinski P, Panomitros E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 2001; 11:1246–1255 [View Article][PubMed]
    [Google Scholar]
  16. Orro A, Cappelletti M, D'Ursi P, Milanesi L, Di Canito A et al. Genome and phenotype microarray analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: genetic determinants and metabolic abilities with environmental relevance. PLoS One 2015; 10:e0139467 [View Article][PubMed]
    [Google Scholar]
  17. Khatri B, Fielder M, Jones G, Newell W, Abu-Oun M et al. High throughput phenotypic analysis of Mycobacterium tuberculosis and Mycobacterium bovis strains' metabolism using Biolog phenotype microarrays. PLoS One 2013; 8:e52673 [View Article][PubMed]
    [Google Scholar]
  18. Lee WC, Goh KL, Loke MF, Vadivelu J. Elucidation of the metabolic network of Helicobacter pylori J99 and Malaysian clinical strains by phenotype microarray. Helicobacter 2017; 22: 03 06 2016 [View Article][PubMed]
    [Google Scholar]
  19. Cappelletti M, Fedi S, Zampolli J, Di Canito A, D'Ursi P, D’Ursi P et al. Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 2016; 167:766–773 [View Article][PubMed]
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  21. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 2019; 47:309–314
    [Google Scholar]
  22. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold; 2020; 362251–2252
  23. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M et al. Card 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48:D517–D525 [View Article][PubMed]
    [Google Scholar]
  24. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification; 2014; 301236–1240
  25. Eren AM, Esen Özcan C, Quince C, Vineis JH, Morrison HG et al. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 2015; 3:e1319 [View Article][PubMed]
    [Google Scholar]
  26. Vaas LAI, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. Opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 2013; 29:1823–1824 [View Article][PubMed]
    [Google Scholar]
  27. Theilmann MC, Goh YJ, Nielsen KF, Klaenhammer TR, Barrangou R et al. Lactobacillus acidophilus metabolizes dietary plant glucosides and externalizes their bioactive phytochemicals. mBio 2017; 8:1421–1438 [View Article][PubMed]
    [Google Scholar]
  28. Belicová A, Mikulášová M, Dušinský R. Probiotic potential and safety properties of Lactobacillus plantarum from Slovak Bryndza cheese. Biomed Res Int 2013; 2013:1–8 [View Article][PubMed]
    [Google Scholar]
  29. Park YE, Kim MS, Shim KW, Kim Y-I, Chu J et al. Effects of Lactobacillus plantarum Q180 on postprandial lipid levels and intestinal environment: a double-blind, randomized, placebo-controlled, parallel trial. Nutrients 2020; 12:255 [View Article][PubMed]
    [Google Scholar]
  30. Tittarelli F, Perpetuini G, Di Gianvito P, Tofalo R. Biogenic amines producing and degrading bacteria: A snapshot from raw ewes’ cheese. LWT 2019; 101:1–9
    [Google Scholar]
  31. Partanen L, Marttinen N, Alatossava T. Fats and fatty acids as growth factors for Lactobacillus delbrueckii. Syst Appl Microbiol 2001; 24:500–506 [View Article][PubMed]
    [Google Scholar]
  32. Zúñiga M, Pérez G, González-Candelas F. Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol 2002; 25:429–444 [View Article][PubMed]
    [Google Scholar]
  33. Chou L-S, Weimer BC, Cutler R. Relationship of arginine and lactose utilization by Lactococcus lactis ssp. lactis ML3. International Dairy Journal 11 Elsevier BV; 2001 pp 253–258
    [Google Scholar]
  34. Fang G, Konings WN, Poolman B. Kinetics and substrate specificity of membrane-reconstituted peptide transporter DtpT of Lactococcus lactis. J Bacteriol 2000; 182:2530–2535 [View Article][PubMed]
    [Google Scholar]
  35. Sleator RD, Hill C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 2002; 26:49–71 [View Article][PubMed]
    [Google Scholar]
  36. Holtmann G, Bremer E. Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J Bacteriol 2004; 186:1683–1693 [View Article][PubMed]
    [Google Scholar]
  37. Bougouffa S, Radovanovic A, Essack M, Bajic VB. DEOP: a database on osmoprotectants and associated pathways. Database 2014; 2014:1–13 [View Article][PubMed]
    [Google Scholar]
  38. Purvis JE, Yomano LP, Ingram LO. Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Appl Environ Microbiol 2005; 71:3761–3769 [View Article][PubMed]
    [Google Scholar]
  39. Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria: an update. Drugs 2009; 69:1555–1623 [View Article][PubMed]
    [Google Scholar]
  40. Poelarends GJ, Mazurkiewicz P, Konings WN. Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim Biophys Acta 2002; 1555:1–7 [View Article][PubMed]
    [Google Scholar]
  41. Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC et al. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl Environ Microbiol 2019; 85:e01738–18 [View Article][PubMed]
    [Google Scholar]
  42. Moore CM, Gaballa A, Hui M, Ye RW, Helmann JD. Genetic and physiological responses of Bacillus subtilis to metal ion stress. Mol Microbiol 2005; 57:27–40 [View Article][PubMed]
    [Google Scholar]
  43. Firrincieli A, Presentato A, Favoino G, Marabottini R, Allevato E et al. Identification of resistance genes and response to arsenic in Rhodococcus aetherivorans BCP1. Front Microbiol 2019; 10:888 [View Article][PubMed]
    [Google Scholar]
  44. Masip L, Veeravalli K, Georgiou G. The many faces of glutathione in bacteria. Antioxidants Redox Signal 2006; 8:753–762
    [Google Scholar]
  45. Ruiz L, Margolles A, Sánchez B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 2013; 4:396 [View Article][PubMed]
    [Google Scholar]
  46. Pan M, Hidalgo-Cantabrana C, Barrangou R. Host and body site-specific adaptation of Lactobacillus crispatus genomes. NAR Genom Bioinform 2020; 2:lqaa001 [View Article][PubMed]
    [Google Scholar]
  47. Pan M, Hidalgo-Cantabrana C, Goh YJ, Sanozky-Dawes R, Barrangou R. Comparative Analysis of Lactobacillus gasseri and Lactobacillus crispatus Isolated From Human Urogenital and Gastrointestinal Tracts. Front Microbiol 2019; 10:3146 [View Article][PubMed]
    [Google Scholar]
  48. Mendes-Soares H, Suzuki H, Hickey RJ, Forney LJ. Comparative functional genomics of Lactobacillus spp. reveals possible mechanisms for specialization of vaginal lactobacilli to their environment. J Bacteriol 2014; 196:1458–1470 [View Article][PubMed]
    [Google Scholar]
  49. Vanfossen AL, Verhaart MRA, Kengen SMW, Kelly RM. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences. Appl Environ Microbiol 2009; 75:7718–7724 [View Article][PubMed]
    [Google Scholar]
  50. Preti G, Huggins GR, Silverberg GD. Alterations in the organic compounds of vaginal secretions caused by sexual arousal. Fertil Steril 1979; 32:47–54[PubMed]
    [Google Scholar]
  51. Dasari S, Pereira L, Reddy AP, Michaels J-EA, Lu X et al. Comprehensive proteomic analysis of human cervical-vaginal fluid. J Proteome Res 2007; 6:1258–1268 [View Article][PubMed]
    [Google Scholar]
  52. Valore EV, Park CH, Igreti SL, Ganz T. Antimicrobial components of vaginal fluid. Am J Obstet Gynecol 2002; 187:561–568 [View Article][PubMed]
    [Google Scholar]
  53. Rajan N, Cao Q, Anderson BE, Pruden DL, Sensibar J et al. Roles of glycoproteins and oligosaccharides found in human vaginal fluid in bacterial adherence. Infect Immun 1999; 67:5027–5032 [View Article][PubMed]
    [Google Scholar]
  54. Graziottin A, Zanello PP. Recurring vaginitis and cystitis: which role for pathogenic biofilms?. minerva ginecol 2014; 66:497–512
    [Google Scholar]
  55. Spear GT, French AL, Gilbert D, Zariffard MR, Mirmonsef P et al. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus. J Infect Dis 2014; 210:1019–1028 [View Article][PubMed]
    [Google Scholar]
  56. van der Veer C, Hertzberger RY, Bruisten SM, Tytgat HLP, Swanenburg J et al. Comparative genomics of human Lactobacillus crispatus isolates reveals genes for glycosylation and glycogen degradation: implications for in vivo dominance of the vaginal microbiota. Microbiome 2019; 7:49 [View Article][PubMed]
    [Google Scholar]
  57. Katayama T, Fujita K, Yamamoto K. Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J Biosci Bioeng 2005; 99:457–465 [View Article][PubMed]
    [Google Scholar]
  58. Corfield AP, Wagner SA, Clamp JR, Kriaris MS, Hoskins LC. Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 1992; 60:3971–3978 [View Article][PubMed]
    [Google Scholar]
  59. Chen KC, Forsyth PS, Buchanan TM, Holmes KK. Amine content of vaginal fluid from untreated and treated patients with nonspecific vaginitis. J Clin Invest 1979; 63:828–835 [View Article][PubMed]
    [Google Scholar]
  60. Srinivasan S, Morgan MT, Fiedler TL, Djukovic D, Hoffman NG et al. Metabolic signatures of bacterial vaginosis. mBio 2015; 6:e00204-15 14 Apr 2015 [View Article][PubMed]
    [Google Scholar]
  61. Parolin C, Foschi C, Laghi L, Zhu C, Banzola N et al. Insights into vaginal bacterial communities and metabolic profiles of Chlamydia trachomatis infection: Positioning between eubiosis and dysbiosis. Front Microbiol 2018; 9:600 [View Article][PubMed]
    [Google Scholar]
  62. Alvarez FJ, Ryman K, Hooijmaijers C, Bulone V, Ljungdahl PO. Diverse nitrogen sources in seminal fluid act in synergy to induce filamentous growth of Candida albicans. Appl Environ Microbiol 2015; 81:2770–2780 [View Article][PubMed]
    [Google Scholar]
  63. Gregoire AT, Lang WR, Ward K. The qualitative identification of free amino acids in human vaginal fluid. Ann N Y Acad Sci 1959; 83:185–188 [View Article][PubMed]
    [Google Scholar]
  64. Zúñiga M, Champomier-Verges M, Zagorec M, Pérez-Martínez G. Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J Bacteriol 1998; 180:4154–4159 [View Article][PubMed]
    [Google Scholar]
  65. Saguir FM, Loto Campos IE, Manca de Nadra MC. Utilization of amino acids and dipeptides by Lactobacillus plantarum from orange in nutritionally stressed conditions. J Appl Microbiol 2008; 104:1597–1604 [View Article][PubMed]
    [Google Scholar]
  66. Macklaim JM, Fernandes AD, Di Bella JM, Hammond J-A, Reid G et al. Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis. Microbiome 2013; 1:12 [View Article][PubMed]
    [Google Scholar]
  67. Mayer BT, Srinivasan S, Fiedler TL, Marrazzo JM, Fredricks DN et al. Rapid and profound shifts in the vaginal microbiota following antibiotic treatment for bacterial vaginosis. J Infect Dis 2015; 212:793–802 [View Article][PubMed]
    [Google Scholar]
  68. Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 2009; 77:2367–2375 [View Article][PubMed]
    [Google Scholar]
  69. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK et al. Short-Term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One 2010; 5:e9836 [View Article][PubMed]
    [Google Scholar]
  70. Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev 2008; 32:361–385 [View Article][PubMed]
    [Google Scholar]
  71. Abriouel H, Casado Muñoz MDC, Lavilla Lerma L, Pérez Montoro B, Bockelmann W et al. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int 2015; 78:465–481 [View Article][PubMed]
    [Google Scholar]
  72. Pfeiler EA, Klaenhammer TR. Role of transporter proteins in bile tolerance of Lactobacillus acidophilus. Appl Environ Microbiol 2009; 75:6013–6016 [View Article][PubMed]
    [Google Scholar]
  73. Liu S, Zheng Y, Ma Y, Sarwar A, Zhao X, Liu Z, Ma S, Zhao L et al. Evaluation and proteomic analysis of lead adsorption by lactic acid bacteria. Int J Mol Sci 2019; 20:5540 [View Article][PubMed]
    [Google Scholar]
  74. Silva JA, Marchesi A, Wiese B, Nader-Macias MEF. Technological characterization of vaginal probiotic lactobacilli: resistance to osmotic stress and strains compatibility. J Appl Microbiol 2019; 127:1835–1847 [View Article][PubMed]
    [Google Scholar]
  75. Obis D, Guillot A, Mistou MY. Tolerance to high osmolality of Lactococcus lactis subsp. lactis and cremoris is related to the activity of a betaine transport system. FEMS Microbiol Lett 2001; 202:39–44 [View Article][PubMed]
    [Google Scholar]
  76. Kirillova AV, Danilushkina AA, Irisov DS, Bruslik NL, Fakhrullin RF et al. Assessment of resistance and bioremediation ability of Lactobacillus strains to lead and cadmium. Int J Microbiol 2017; 2017:1–7 [View Article][PubMed]
    [Google Scholar]
  77. Monachese M, Burton JP, Reid G. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics?. Appl Environ Microbiol 2012; 78:6397–6404 [View Article][PubMed]
    [Google Scholar]
  78. Solioz M, Mermod M, Abicht HK, Mancini S. Responses of lactic acid bacteria to heavy metal stress. Stress Responses Lact Acid Bact 2011163–195
    [Google Scholar]
  79. Ramanathan B, Jindal HM, Le CF, Gudimella R, Anwar A et al. Next generation sequencing reveals the antibiotic resistant variants in the genome of Pseudomonas aeruginosa. PLoS One 2017; 12:e0182524 [View Article][PubMed]
    [Google Scholar]
  80. Gad GFM, Abdel-Hamid AM, Farag ZSH. Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products. Braz J Microbiol 2014; 45:25–33 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000575
Loading
/content/journal/mgen/10.1099/mgen.0.000575
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error