1887

Abstract

is an anaerobic commensal of the oral cavity associated with periodontitis and extra-oral diseases, including colorectal cancer. Previous studies have shown an increased relative abundance of this bacterium associated with oral dysplasia or within oral tumours. Using direct culture, we found that 75 % of species isolated from malignant or potentially malignant oral mucosa were subsp. . Whole genome sequencing and pangenome analysis with Panaroo was carried out on 76 . subsp. genomes. subsp. was shown to possesses a relatively small core genome of 1604 genes in a pangenome of 7363 genes. Phylogenetic analysis based on the core genome shows the isolates can be separated into three main clades with no obvious genotypic associations with disease. Isolates recovered from healthy and diseased sites in the same patient are generally highly related. A large repertoire of adhesins belonging to the type V secretion system (TVSS) could be identified with major variation in repertoire and copy number between strains. Analysis of intergenic recombination using fastGEAR showed that adhesin complement is shaped by horizontal gene transfer and recombination. Recombination events at TVSS adhesin genes were not only common between lineages of subspecies but also between different subspecies of . Strains of subspecies with low copy numbers of TVSS adhesin encoding genes tended to have the weakest adhesion to oral keratinocytes. This study highlights the genetic heterogeneity of subsp. and provides a new framework for defining virulence in this organism.

Funding
This study was supported by the:
  • Health Research Board (Award ILP-2019-030)
    • Principle Award Recipient: GaryP. Moran
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001217
2024-03-26
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/3/mgen001217.html?itemId=/content/journal/mgen/10.1099/mgen.0.001217&mimeType=html&fmt=ahah

References

  1. Gharbia SE, Shah HN, Lawson PA, Haapasalo M. Distribution and frequency of Fusobacterium nucleatum subspecies in the human oral cavity. Oral Microbiol Immunol 1990; 5:324–327 [View Article] [PubMed]
    [Google Scholar]
  2. Kim H-S, Lee D-S, Chang Y-H, Kim MJ, Koh S et al. Application of rpoB and zinc protease gene for use in molecular discrimination of Fusobacterium nucleatum subspecies. J Clin Microbiol 2010; 48:545–553 [View Article] [PubMed]
    [Google Scholar]
  3. Kook J-K, Park S-N, Lim YK, Choi M-H, Cho E et al. Fusobacterium nucleatum subsp. fusiforme Gharbia and Shah 1992 is a later synonym of Fusobacterium nucleatum subsp. vincentii Dzink et al. 1990. Curr Microbiol 2013; 66:414–417 [View Article]
    [Google Scholar]
  4. Kook J-K, Park S-N, Lim YK, Cho E, Jo E et al. Genome-based reclassification of Fusobacterium nucleatum subspecies at the species level. Curr Microbiol 2017; 74:1137–1147 [View Article] [PubMed]
    [Google Scholar]
  5. Krieger M, AbdelRahman YM, Choi D, Palmer EA, Yoo A et al. The prevalence of Fusobacterium nucleatum subspecies in the oral cavity stratifies by local health status. bioRxiv 20232023.10.25.563997 [View Article] [PubMed]
    [Google Scholar]
  6. Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 2015; 23:141–147 [View Article] [PubMed]
    [Google Scholar]
  7. Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2019; 17:156–166 [View Article] [PubMed]
    [Google Scholar]
  8. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 2012; 22:292–298 [View Article] [PubMed]
    [Google Scholar]
  9. Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med 2015; 7:27 [View Article] [PubMed]
    [Google Scholar]
  10. Zhang N, Liu Y, Yang H, Liang M, Wang X et al. Clinical significance of Fusobacterium nucleatum infection and regulatory T cell enrichment in Esophageal squamous cell carcinoma. Pathol Oncol Res 2021; 27:1609846 [View Article] [PubMed]
    [Google Scholar]
  11. Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun 2020; 11:3259 [View Article] [PubMed]
    [Google Scholar]
  12. Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016; 65:1973–1980 [View Article] [PubMed]
    [Google Scholar]
  13. Kunzmann AT, Proença MA, Jordao HW, Jiraskova K, Schneiderova M et al. Fusobacterium nucleatum tumor DNA levels are associated with survival in colorectal cancer patients. Eur J Clin Microbiol Infect Dis 2019; 38:1891–1899 [View Article] [PubMed]
    [Google Scholar]
  14. Yu T, Guo F, Yu Y, Sun T, Ma D et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017; 170:548–563 [View Article] [PubMed]
    [Google Scholar]
  15. Torralba MG, Aleti G, Li W, Moncera KJ, Lin Y-H et al. Oral microbial species and virulence factors associated with oral squamous cell carcinoma. Microb Ecol 2021; 82:1030–1046 [View Article] [PubMed]
    [Google Scholar]
  16. Perera M, Al-Hebshi NN, Perera I, Ipe D, Ulett GC et al. Inflammatory bacteriome and oral squamous cell carcinoma. J Dent Res 2018; 97:725–732 [View Article] [PubMed]
    [Google Scholar]
  17. Al-Hebshi NN, Nasher AT, Maryoud MY, Homeida HE, Chen T et al. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep 2017; 7:1834 [View Article] [PubMed]
    [Google Scholar]
  18. Yang C-Y, Yeh Y-M, Yu H-Y, Chin C-Y, Hsu C-W et al. Oral microbiota community dynamics associated with oral squamous cell carcinoma staging. Front Microbiol 2018; 9:862 [View Article] [PubMed]
    [Google Scholar]
  19. Amer A, Galvin S, Healy CM, Moran GP. The microbiome of potentially malignant oral leukoplakia exhibits enrichment for Fusobacterium, Leptotrichia, Campylobacter, and Rothia species. Front Microbiol 2017; 8:2391 [View Article] [PubMed]
    [Google Scholar]
  20. Yost S, Stashenko P, Choi Y, Kukuruzinska M, Genco CA et al. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int J Oral Sci 2018; 10:32 [View Article] [PubMed]
    [Google Scholar]
  21. Galeano Niño JL, Wu H, LaCourse KD, Kempchinsky AG, Baryiames A et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 2022; 611:810–817 [View Article]
    [Google Scholar]
  22. Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2015; 6:22613–22623 [View Article] [PubMed]
    [Google Scholar]
  23. Kaplan CW, Lux R, Huynh T, Jewett A, Shi W et al. Fusobacterium nucleatum apoptosis-inducing outer membrane protein. J Dent Res 2005; 84:700–704 [View Article] [PubMed]
    [Google Scholar]
  24. Kaplan CW, Lux R, Haake SK, Shi W. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol Microbiol 2009; 71:35–47 [View Article] [PubMed]
    [Google Scholar]
  25. Abed J, Emgård JEM, Zamir G, Faroja M, Almogy G et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe 2016; 20:215–225 [View Article] [PubMed]
    [Google Scholar]
  26. Coppenhagen-Glazer S, Sol A, Abed J, Naor R, Zhang X et al. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect Immun 2015; 83:1104–1113 [View Article] [PubMed]
    [Google Scholar]
  27. Rubinstein MR, Baik JE, Lagana SM, Han RP, Raab WJ et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO Rep 2019; 20:e47638 [View Article] [PubMed]
    [Google Scholar]
  28. Gur C, Maalouf N, Shhadeh A, Berhani O, Singer BB et al. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Oncoimmunology 2019; 8:e1581531 [View Article] [PubMed]
    [Google Scholar]
  29. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015; 42:344–355 [View Article] [PubMed]
    [Google Scholar]
  30. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14:195–206 [View Article] [PubMed]
    [Google Scholar]
  31. Casasanta MA, Yoo CC, Udayasuryan B, Sanders BE, Umaña A et al. Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Sci Signal 2020; 13:eaba9157 [View Article] [PubMed]
    [Google Scholar]
  32. Umaña A, Sanders BE, Yoo CC, Casasanta MA, Udayasuryan B et al. Utilizing whole Fusobacterium genomes to identify, correct, and characterize potential virulence protein families. J Bacteriol 2019; 201:e00273-19 [View Article] [PubMed]
    [Google Scholar]
  33. Mira A, Pushker R, Legault BA, Moreira D, Rodríguez-Valera F. Evolutionary relationships of Fusobacterium nucleatum based on phylogenetic analysis and comparative genomics. BMC Evol Biol 2004; 4:50 [View Article] [PubMed]
    [Google Scholar]
  34. McGuire AM, Cochrane K, Griggs AD, Haas BJ, Abeel T et al. Evolution of invasion in a diverse set of Fusobacterium species. Mbio 2014; 5:e01864–14
    [Google Scholar]
  35. Karpathy SE, Qin X, Gioia J, Jiang H, Liu Y et al. Genome sequence of Fusobacterium nucleatum subspecies polymorphum - a genetically tractable fusobacterium. PLoS One 2007; 2:e659 [View Article] [PubMed]
    [Google Scholar]
  36. Sanders BE, Umana A, Lemkul JA, Slade DJ. FusoPortal: an interactive repository of hybrid MinION-sequenced Fusobacterium genomes improves gene identification and characterization. mSphere 2018; 3:e00228-18 [View Article] [PubMed]
    [Google Scholar]
  37. Fonknechten N, Perret A, Perchat N, Tricot S, Lechaplais C et al. A conserved gene cluster rules anaerobic oxidative degradation of L-ornithine. J Bacteriol 2009; 191:3162–3167 [View Article] [PubMed]
    [Google Scholar]
  38. Brazier JS, Citron DM, Goldstein EJC. A selective medium for Fusobacterium spp. J Appl Bacteriol 1991; 71:343–346 [View Article] [PubMed]
    [Google Scholar]
  39. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article]
    [Google Scholar]
  40. Earls MR, Steinig EJ, Monecke S, Samaniego Castruita JA, Simbeck A et al. Exploring the evolution and epidemiology of European CC1-MRSA-IV: tracking a multidrug-resistant community-associated meticillin-resistant Staphylococcus aureus clone. Microb Genom 2021; 7:000601 [View Article] [PubMed]
    [Google Scholar]
  41. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13:e1005595 [View Article] [PubMed]
    [Google Scholar]
  42. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  43. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  44. Tonkin-Hill G, MacAlasdair N, Ruis C, Weimann A, Horesh G et al. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol 2020; 21:180 [View Article] [PubMed]
    [Google Scholar]
  45. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article] [PubMed]
    [Google Scholar]
  46. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  47. Ferrés I, Iraola G. Pagoo: an encapsulated and object-oriented framework for evolutionary analysis of bacterial pangenomes. SSRN Journal 2021 [View Article]
    [Google Scholar]
  48. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article] [PubMed]
    [Google Scholar]
  49. Brynildsrud O, Bohlin J, Scheffer L, Eldholm V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol 2016; 17:238 [View Article] [PubMed]
    [Google Scholar]
  50. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015; 31:3350–3352 [View Article] [PubMed]
    [Google Scholar]
  51. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG et al. ACT: the artemis comparison tool. Bioinformatics 2005; 21:3422–3423 [View Article] [PubMed]
    [Google Scholar]
  52. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [View Article] [PubMed]
    [Google Scholar]
  53. Krogh A, Brown M, Mian IS, Sjölander K, Haussler D. Hidden Markov models in computational biology. J Mol Biol 1994; 235:1501–1531 [View Article]
    [Google Scholar]
  54. Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 2022; 40:1023–1025 [View Article] [PubMed]
    [Google Scholar]
  55. Zallot R, Oberg N, Gerlt JA. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 2019; 58:4169–4182 [View Article] [PubMed]
    [Google Scholar]
  56. Mostowy R, Croucher NJ, Andam CP, Corander J, Hanage WP et al. Efficient inference of recent and ancestral recombination within bacterial populations. Mol Biol Evol 2017; 34:1167–1182 [View Article] [PubMed]
    [Google Scholar]
  57. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2019; 20:1160–1166 [View Article] [PubMed]
    [Google Scholar]
  58. Suwannakul S, Stafford GP, Whawell SA, Douglas CWI. Identification of bistable populations of Porphyromonas gingivalis that differ in epithelial cell invasion. Microbiology 2010; 156:3052–3064 [View Article] [PubMed]
    [Google Scholar]
  59. Meuskens I, Saragliadis A, Leo JC, Linke D. Type V secretion systems: an overview of passenger domain functions. Front Microbiol 2019; 10:1163 [View Article] [PubMed]
    [Google Scholar]
  60. Casasanta MA, Yoo CC, Smith HB, Duncan AJ, Cochrane K et al. A chemical and biological toolbox for Type Vd secretion: characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatum. J Biol Chem 2017; 292:20240–20254 [View Article] [PubMed]
    [Google Scholar]
  61. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 2012; 22:299–306 [View Article] [PubMed]
    [Google Scholar]
  62. Eren AM, Borisy GG, Huse SM, Mark Welch JL. Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci USA 2014; 111:E2875–E2884 [View Article]
    [Google Scholar]
  63. Harrandah AM, Chukkapalli SS, Bhattacharyya I, Progulske-Fox A, Chan EKL. Fusobacteria modulate oral carcinogenesis and promote cancer progression. J Oral Microbiol 2020; 13:1849493 [View Article] [PubMed]
    [Google Scholar]
  64. Queen J, Domingue JC, White JR, Stevens C, Udayasuryan B et al. Comparative analysis of colon cancer-derived Fusobacterium nucleatum subspecies: inflammation and colon tumorigenesis in murine models. mBio 2022; 13:e02991–21 [View Article]
    [Google Scholar]
  65. Umana A, Sanders BE, Yoo CC, Casasanta MA, Udayasuryan B et al. Reevaluating the Fusobacterium virulence factor landscape. Microbiology 2019; 534297 [View Article]
    [Google Scholar]
  66. Tran HNH, Thu TNH, Nguyen PH, Vo CN, Doan KV et al. Tumour microbiomes and Fusobacterium genomics in Vietnamese colorectal cancer patients. NPJ Biofilms Microbiomes 2022; 8:87 [View Article] [PubMed]
    [Google Scholar]
  67. Umaña A, Nguyen TTD, Sanders BE, Williams KJ, Wozniak B et al. Enhanced Fusobacterium nucleatum genetics using host DNA methyltransferases to bypass restriction-modification systems. J Bacteriol 2022; 204:e0027922 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001217
Loading
/content/journal/mgen/10.1099/mgen.0.001217
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error