1887

Abstract

Genome assembly and annotation using short-paired reads is challenging for eukaryotic organisms due to their large size, variable ploidy and large number of repetitive elements. However, the use of single-molecule long reads improves assembly quality (completeness and contiguity), but haplotype duplications still pose assembly challenges. To address the effect of read length on genome assembly quality, gene prediction and annotation, we compared genome assemblers and sequencing technologies with four strains of the ectomycorrhizal fungus . By analysing the predicted repertoire of carbohydrate enzymes, we investigated the effects of assembly quality on functional inferences. Libraries were generated using three different sequencing platforms (Illumina Next-Seq, Mi-Seq and PacBio Sequel), and genomes were assembled using single and hybrid assemblies/libraries. Long reads or hybrid assemby resolved the collapsing of repeated regions, but the nuclear heterozygous versions remained unresolved. In dikaryotic fungi, each cell includes two nuclei and each nucleus has differences not only in allelic gene version but also in gene composition and synteny. These heterokaryotic cells produce fragmentation and size overestimation of the genome assembly of each nucleus. Hybrid assembly revealed a wider functional diversity of genomes. Here, several predicted oxidizing activities on glycosyl residues of oligosaccharides and several chitooligosaccharide acetylase activities would have passed unnoticed in short-read assemblies. Also, the size and fragmentation of the genome assembly, in combination with heterozygosity analysis, allowed us to distinguish homokaryotic and heterokaryotic strains isolated from fruit bodies.

Funding
This study was supported by the:
  • PAPIIT-UNAM (Award IT-200719)
    • Principle Award Recipient: MauricioA. Trujillo-Roldán
  • PAPIIT-UNAM (Award IN-212521)
    • Principle Award Recipient: RobertoGaribay-Orijel
  • PAPIIT-UNAM (Award IN-210217)
    • Principle Award Recipient: RobertoGaribay-Orijel
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001218
2024-03-26
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/3/mgen001218.html?itemId=/content/journal/mgen/10.1099/mgen.0.001218&mimeType=html&fmt=ahah

References

  1. Barnes EH. The fungi. Atlas Manual Plant Pathol 1979115–122 [View Article]
    [Google Scholar]
  2. Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE et al. The fungal tree of life: from molecular systematics to genome-scale phylogenies. Microbiol Spectr 2017; 5:FUNK-0053-2016 [View Article] [PubMed]
    [Google Scholar]
  3. Horton TR. The number of nuclei in basidiospores of 63 species of ectomycorrhizal Homobasidiomycetes. Mycologia 2006; 98:233–238 [View Article] [PubMed]
    [Google Scholar]
  4. Smith SE, Read DJ. Mycorrhizal Symbiosis Academic press; 2010
    [Google Scholar]
  5. Alexopoulos CJ, Mims CW, Blackwell M. Introductory Mycology, 4th edn. edn John Wiley and Sons; 1996
    [Google Scholar]
  6. Deacon JW. Fungal Biology John Wiley & Sons; 2005 [View Article]
    [Google Scholar]
  7. Herrera T, Ulloa M, Ruiz-Oronoz MC. El Reino de Los Hongos: Micología Básica Y Aplicada. Fondo de Cultura Económica 1998; 552:
    [Google Scholar]
  8. Alkan C, Sajjadian S, Eichler EE. Limitations of next-generation genome sequence assembly. Nat Methods 2011; 8:61–65 [View Article] [PubMed]
    [Google Scholar]
  9. Guiglielmoni N, Houtain A, Derzelle A, Van Doninck K, Flot J-F. Overcoming uncollapsed haplotypes in long-read assemblies of non-model organisms. BMC Bioinformatics 2021; 22:303 [View Article] [PubMed]
    [Google Scholar]
  10. Smits THM. The importance of genome sequence quality to microbial comparative genomics. BMC Genomics 2019; 20:662 [View Article]
    [Google Scholar]
  11. Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction. Nat Biotechnol 2019; 37:124–126 [View Article]
    [Google Scholar]
  12. Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME et al. Opportunities and challenges in long-read sequencing data analysis. Genome Biol 2020; 21:30 [View Article] [PubMed]
    [Google Scholar]
  13. Koren S, Phillippy AM, Simpson JT, Loman NJ, Loose M. Reply to ‘Errors in long-read assemblies can critically affect protein prediction. Nat Biotechnol 2019; 37:127–128 [View Article]
    [Google Scholar]
  14. Koren S, Schatz MC, Walenz BP, Martin J, Howard JT et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 2012; 30:693–700 [View Article] [PubMed]
    [Google Scholar]
  15. Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat Rev Genet 2018; 19:329–346 [View Article] [PubMed]
    [Google Scholar]
  16. Wang A, Au KF. Performance difference of graph-based and alignment-based hybrid error correction methods for error-prone long reads. Genome Biol 2020; 21:14 [View Article] [PubMed]
    [Google Scholar]
  17. Hess J, Skrede I, Chaib De Mares M, Hainaut M, Henrissat B et al. Rapid divergence of genome architectures following the origin of an ectomycorrhizal symbiosis in the Genus amanita. Mol Biol Evol 2018; 35:2786–2804 [View Article] [PubMed]
    [Google Scholar]
  18. Hess J, Skrede I, Wolfe BE, LaButti K, Ohm RA et al. Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi. Genome Biol Evol 2014; 6:1564–1578 [View Article] [PubMed]
    [Google Scholar]
  19. Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K. Cut-and-paste transposons in fungi with diverse lifestyles. Genome Biol Evol 2017; 9:3463–3477 [View Article] [PubMed]
    [Google Scholar]
  20. Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun 2020; 11:5125 [View Article] [PubMed]
    [Google Scholar]
  21. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  22. Nowoshilow S, Schloissnig S, Fei J-F, Dahl A, Pang AWC et al. The axolotl genome and the evolution of key tissue formation regulators. Nature 2018; 554:50–55 [View Article]
    [Google Scholar]
  23. Osipowski P, Pawełkowicz M, Wojcieszek M, Skarzyńska A, Przybecki Z et al. A high-quality cucumber genome assembly enhances computational comparative genomics. Mol Genet Genomics 2020; 295:177–193 [View Article]
    [Google Scholar]
  24. Tobias PA, Schwessinger B, Deng CH, Wu C, Dong C et al. Austropuccinia psidii, causing myrtle rust, has a gigabase-sized genome shaped by transposable elements. Genomics 2020 [View Article]
    [Google Scholar]
  25. Gao Q, Yan D, Song S, Fan Y, Wang S et al. Haplotype-Resolved Genome Analyses Reveal Genetically Distinct Nuclei within a Commercial Cultivar of Lentinula edodes. J Fungi 2022; 8:167 [View Article] [PubMed]
    [Google Scholar]
  26. Wang Y-W, McKeon MC, Elmore H, Hess J, Golan J et al. Invasive Californian death caps develop mushrooms unisexually and bisexually. bioRxiv 2023; 14:6560 [View Article]
    [Google Scholar]
  27. Ángeles-Argáiz RE, Carmona-Reyes IA, Quintero-Corrales CA, Medina-Macías FJ, Blancas-Cabrera A et al. From field sampling to pneumatic bioreactor mycelia production of the ectomycorrhizal mushroom Laccaria trichodermophora. Fungal Biol 2020; 124:205–218 [View Article] [PubMed]
    [Google Scholar]
  28. Montoya A, Kong A, Estrada-Torres A, Cifuentes J, Caballero J. Useful wild fungi of La Malinche National Park, Mexico. Fungal Divers 2004; 17:115–143
    [Google Scholar]
  29. Montoya A, Kong A, Garibay-Orijel R, Méndez-Espinoza C, Tulloss RE et al. Availability of Wild Edible Fungi in La Malinche National Park, Mexico. J Mycol 2014; 2014:1–15 [View Article]
    [Google Scholar]
  30. Pérez-Moreno J, Martínez-Reyes M, Hernández-Santiago F, Ortiz-Lopez I. Climate change, biotechnology, and Mexican Neotropical edible ectomycorrhizal mushrooms. In Mushrooms, Humans and Nature in a Changing World: Perspectives from Ecological, Agricultural and Social Sciences 2020 pp 61–99 [View Article]
    [Google Scholar]
  31. Martin F, Aerts A, Ahrén D, Brun A, Danchin EGJ et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 2008; 452:88–92 [View Article] [PubMed]
    [Google Scholar]
  32. Wilson AW, Hosaka K, Mueller GM. Evolution of ectomycorrhizas as a driver of diversification and biogeographic patterns in the model mycorrhizal mushroom genus Laccaria. New Phytol 2017; 213:1862–1873 [View Article] [PubMed]
    [Google Scholar]
  33. Mueller GM. New Northamerican species of Laccaria (Agaricales). Mycotaxon 1984; 20:101–116
    [Google Scholar]
  34. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature genetics 2015; 47:410–415
    [Google Scholar]
  35. Mueller GM. Systematics of Laccaria (Agaricales) in the Continental United States and Canada, with Discussions on Extralimital Taxa and Descriptions of Extant Types Chicago: Field Museum of Natural History; 1992 [View Article]
    [Google Scholar]
  36. Galindo-Flores G, Castillo-Guevara C, Campos-López A, Lara C. Caracterización de las ectomicorrizas formadas por Laccaria trichodermophora y Suillus tomentosus en Pinus montezumae. Bot Sci 2015; 93:855–863 [View Article]
    [Google Scholar]
  37. Pérez F, Castillo-Guevara C, Galindo-Flores G, Cuautle M, Estrada-Torres A. Effect of gut passage by two highland rodents on spore activity and mycorrhiza formation of two species of ectomycorrhizal fungi (Laccaria trichodermophora and Suillus tomentosus). Botany 2012; 90:1084–1092 [View Article]
    [Google Scholar]
  38. Reverchon F, Ortega-Larrocea M del P, Pérez-Moreno J. Soil factors influencing ectomycorrhizal sporome distribution in neotropical forests dominated by Pinus montezumae, Mexico. Mycoscience 2012; 53:203–210 [View Article]
    [Google Scholar]
  39. Reverchon F, Ortega-Larrocea M del P, Pérez-Moreno J, Peña-Ramírez VM, Siebe C. Changes in community structure of ectomycorrhizal fungi associated with Pinus montezumae across a volcanic soil chronosequence at Sierra Chichinautzin, Mexico. Can J For Res 2010; 40:1165–1174 [View Article]
    [Google Scholar]
  40. Franco-Maass S, Burrola-Aguilar C, Arana-Gabriel Y, García-Almaraz LA. A local knowledge-based approach to predict anthropic harvesting pressure zones of wild edible mushrooms as a tool for forest conservation in Central Mexico. For Policy Econ 2016; 73:239–250 [View Article]
    [Google Scholar]
  41. Kong A, Montoya A, García-de Jesús S, Ramírez-Terrazo A, Andrade R et al. Hongos ectomicorrizógenos del Parque Nacional Lagunas de Montebello, Chiapas. RevMexBiodiv 2018; 89:741–756 [View Article]
    [Google Scholar]
  42. López García A, Jiménez Ruiz M, Pérez Moreno J. Vocablos relacionados con el recurso micológico en el idioma de la cultura chinanteca de la Sierra Norte del estado de Oaxaca, México. Sci Fungorum 2017; 46:9–18 [View Article]
    [Google Scholar]
  43. Quintero-Corrales C, Ángeles-Argáiz R, Jaramillo-Correa JP, Piñero D, Garibay-Orijel R et al. Allopatric instead of parapatric divergence in an ectomycorrhizal fungus (Laccaria trichodermophora) in tropical sky-islands. Fungal Ecology 2020; 47:100966 [View Article]
    [Google Scholar]
  44. Rodríguez-Gutiérrez I, Ramírez-Martínez D, Garibay-Orijel R, Jacob-Cervantes V, Pérez-Moreno J et al. Sympatric species develop more efficient ectomycorrhizae in the Pinus-Laccaria symbiosis. RevMexBiodiv 2019; 90: [View Article]
    [Google Scholar]
  45. Hernández F. Biotecnología, Etnomicología y Mesofauna Asociada Con Hongos Ectomicorrízicos Comestibles En La Mixteca Oaxaqueña 2016
    [Google Scholar]
  46. Mueller GM, Strack BA. Evidence for a mycorrhizal host shift during migration of Laccaria trichodermophora and other agarics into neotropical oak forests. Mycotaxon 1992; 45:249–256
    [Google Scholar]
  47. Ramos A, Bandala VM, Montoya L. A new species and a new record of Laccaria (Fungi, Basidiomycota) found in a relict forest of the endangered fagus grandifolia var. mexicana. MycoKeys 2017; 27:77–94 [View Article] [PubMed]
    [Google Scholar]
  48. Krueger F. Trim Galore!: A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files; 2015 www.bioinformatics.babraham.ac.uk/projects/trim_galore
  49. Andrews S. FASTQC. A quality control tool for high throughput sequence data; 2010 http:// www.bioinformatics.babraham.ac.uk/projects/fastqc
  50. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article] [PubMed]
    [Google Scholar]
  51. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM et al. ABySS: a parallel assembler for short read sequence data. Genome Res 2009; 19:1117–1123 [View Article] [PubMed]
    [Google Scholar]
  52. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012; 28:1420–1428 [View Article] [PubMed]
    [Google Scholar]
  53. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  54. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  55. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011; 27:578–579 [View Article] [PubMed]
    [Google Scholar]
  56. Nadalin F, Vezzi F, Policriti A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 2012; 13 Suppl 14:S8 [View Article] [PubMed]
    [Google Scholar]
  57. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  58. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 2016; 32:1009–1015 [View Article] [PubMed]
    [Google Scholar]
  59. Zimin AV, Puiu D, Luo M-C, Zhu T, Koren S et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res 2017; 27:787–792 [View Article] [PubMed]
    [Google Scholar]
  60. Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nature methods 2020; 17:155–158
    [Google Scholar]
  61. Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics 2014; 15:211 [View Article] [PubMed]
    [Google Scholar]
  62. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  63. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  64. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 2018; 34:3094–3100 [View Article]
    [Google Scholar]
  65. Roach MJ, Schmidt SA, Borneman AR. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics 2018; 19:460 [View Article] [PubMed]
    [Google Scholar]
  66. Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. In Kollmar M. eds Gene Prediction. Methods in Molecular Biology vol 1962 Humana, New York, NY; 2019 pp 227–245 [View Article] [PubMed]
    [Google Scholar]
  67. Bushnell B. Bbtools: a suite of fast, multithreaded bioinformatics tools designed for analysis of DNA and RNA sequence data. Joint Genome Ins 2018
    [Google Scholar]
  68. Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016; 32:605–607 [View Article] [PubMed]
    [Google Scholar]
  69. Laczny CC, Sternal T, Plugaru V, Gawron P, Atashpendar A et al. VizBin - an application for reference-independent visualization and human-augmented binning of metagenomic data. Microbiome 2015; 3: [View Article]
    [Google Scholar]
  70. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–9 [View Article] [PubMed]
    [Google Scholar]
  71. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 2011; 27:764–770 [View Article] [PubMed]
    [Google Scholar]
  72. Lander ES, Waterman MS. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 1988; 2:231–239 [View Article] [PubMed]
    [Google Scholar]
  73. Simpson JT. Exploring genome characteristics and sequence quality without a reference. Bioinformatics 2014; 30:1228–1235 [View Article]
    [Google Scholar]
  74. Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 2017; 33:2202–2204 [View Article] [PubMed]
    [Google Scholar]
  75. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article] [PubMed]
    [Google Scholar]
  76. Niculita-Hirzel H, Labbé J, Kohler A, Le Tacon F, Martin F et al. Gene organization of the mating type regions in the ectomycorrhizal fungus Laccaria bicolor reveals distinct evolution between the two mating type loci. New Phytol 2008; 180:329–342 [View Article] [PubMed]
    [Google Scholar]
  77. Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol 2018; 14:e1005944 [View Article] [PubMed]
    [Google Scholar]
  78. Veneault-Fourrey C, Commun C, Kohler A, Morin E, Balestrini R et al. Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet Biol 2014; 72:168–181 [View Article] [PubMed]
    [Google Scholar]
  79. Stanke M, Steinkamp R, Waack S, Morgenstern B. AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic acids research 2004; 32:W309–W312
    [Google Scholar]
  80. Zhang H, Yohe T, Huang L, Entwistle S, Wu P et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 2018; 46:W95–W101 [View Article]
    [Google Scholar]
  81. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 2011; 39:W29–37 [View Article] [PubMed]
    [Google Scholar]
  82. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–5 [View Article] [PubMed]
    [Google Scholar]
  83. Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat Biotechnol 2019; 37:953–961 [View Article] [PubMed]
    [Google Scholar]
  84. Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 2014; 15:121–132 [View Article] [PubMed]
    [Google Scholar]
  85. Diguistini S, Liao NY, Platt D, Robertson G, Seidel M et al. De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biol 2009; 10:R94 [View Article] [PubMed]
    [Google Scholar]
  86. Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res 2016; 44:e147 [View Article] [PubMed]
    [Google Scholar]
  87. Mohanta TK, Bae H. The diversity of fungal genome. Biological Procedures Online 2015; 17:1–9
    [Google Scholar]
  88. Tan MK, Collins D, Chen Z, Englezou A, Wilkins MR. A brief overview of the size and composition of the myrtle rust genome and its taxonomic status. Mycology 2014; 5:52–63 [View Article] [PubMed]
    [Google Scholar]
  89. Duplessis S, Spanu PD, Schirawski J. Biotrophic fungi (powdery Mildews, Rusts, and Smuts). Ecol Genomics Fungi 2013149–168 [View Article]
    [Google Scholar]
  90. Gerstein AC, Fu MS, Mukaremera L, Li Z, Ormerod KL et al. Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation. mBio 2015; 6:e01340-15 [View Article] [PubMed]
    [Google Scholar]
  91. Linder RA, Greco JP, Seidl F, Matsui T, Ehrenreich IM. The stress-inducible peroxidase TSA2 underlies a conditionally beneficial chromosomal duplication in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics 2017; 7:3177–3184 [View Article] [PubMed]
    [Google Scholar]
  92. Todd RT, Forche A, Selmecki A. Ploidy variation in fungi: polyploidy, aneuploidy, and genome evolution. Microbiology spectrum 2017; 5:10–1128
    [Google Scholar]
  93. Zhu YO, Sherlock G, Petrov DA. Whole genome analysis of 132 clinical Saccharomyces cerevisiae strains reveals extensive ploidy variation. G3: Genes, Genomes, Genetics 2016; 6:2421–2434
    [Google Scholar]
  94. Selman M, Sak B, Kváč M, Farinelli L, Weiss LM et al. Extremely reduced levels of heterozygosity in the vertebrate pathogen Encephalitozoon cuniculi. Eukaryot Cell 2013; 12:496–502 [View Article] [PubMed]
    [Google Scholar]
  95. Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G et al. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont rhizophagus irregularis. New Phytol 2018; 220:1161–1171 [View Article] [PubMed]
    [Google Scholar]
  96. Montoliu-Nerin M, Sánchez-García M, Bergin C, Grabherr M, Ellis B et al. Building de novo reference genome assemblies of complex eukaryotic microorganisms from single nuclei. Sci Rep 2020; 10:1303 [View Article] [PubMed]
    [Google Scholar]
  97. Pelkmans JF, Lugones LG, Wösten HA. 15 Fruiting Body Formation in Basidiomycetes. The Mycota Book Series Growth, Differentiation and Sexuality 2016 pp 387–405 [View Article]
    [Google Scholar]
  98. Tommerup IC, Bougher NL, Malajczuk N. Laccaria fraterna, a common ectomycorrhizal fungus with mono- and bi-sporic basidia and multinucleate spores: comparison with the quadristerigmate, binucleate spored L. laccata and the hypogeous relative Hydnangium carneum. Mycol Res 1991; 95:689–698 [View Article]
    [Google Scholar]
  99. Banuett F. From dikaryon to diploid. Fungal Biol Reviews 2015; 29:194–208 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001218
Loading
/content/journal/mgen/10.1099/mgen.0.001218
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error