1887

Abstract

In Morocco, cutaneous leishmaniasis (CL) caused by () is an important health problem. Despite the high incidence of CL in the country, the genomic heterogeneity of these parasites is still incompletely understood. In this study, we sequenced the genomes of 14 Moroccan isolates of collected from confirmed cases of CL to investigate their genomic heterogeneity. Comparative genomics analyses were conducted by applying the recently established Genome Instability Pipeline (GIP), which allowed us to conduct phylogenomic and principal components analyses (PCA), and to assess genomic variations at the levels of the karyotype, gene copy number, single nucleotide polymorphisms (SNPs) and small insertions/deletions (INDELs) variants. Read-depth analyses revealed a mostly disomic karyotype, with the exception of the stable tetrasomy of chromosome 31. In contrast, we identified important gene copy number variations across all isolates, which affect known virulence genes and thus were probably selected in the field. SNP-based cluster analysis of the 14 isolates revealed a core group of 12 strains that formed a tight cluster and shared 45.1 % (87 751) of SNPs, as well as two strains (M3015, Ltr_16) that clustered separately from each other and the core group, suggesting the circulation of genetically highly diverse strains in Morocco. Phylogenetic analysis, which compared our 14 isolates against 40 published genomes of from a diverse array of locations, confirmed the genetic difference of our Moroccan isolates from all other isolates examined. In conclusion, our results indicate potential regional variations in SNP profiles that may differentiate Moroccan from other strains circulating in endemic countries in the Middle East. Our report paves the way for future research with a larger number of strains that will allow correlation of diverse phenotypes (resistance to treatments, virulence) and origins (geography, host species, year of isolation) to defined genomic signals such as gene copy number variations or SNP profiles that may represent interesting biomarker candidates

Funding
This study was supported by the:
  • EU funded project LeiSHield-MATI RISE (Award Grant Agreement N°778298)
    • Principle Award Recipient: F. SpäthGerald
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001230
2024-04-05
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/4/mgen001230.html?itemId=/content/journal/mgen/10.1099/mgen.0.001230&mimeType=html&fmt=ahah

References

  1. Gijón-Robles P, Abattouy N, Merino-Espinosa G, El Khalfaoui N, Morillas-Márquez F et al. Risk factors for the expansion of cutaneous leishmaniasis by Leishmania tropica: possible implications for control programmes. Transbound Emerg Dis 2018; 65:1615–1626 [View Article] [PubMed]
    [Google Scholar]
  2. Dereure J, Rioux J-A, Khiami A, Pratlong F, Périères J et al. Écoépidémiologie des Leishmanioses en Syrie. 2 — Présence, chez le chien, de Leishmania infantum Nicolle et Leishmania tropica (Wright) (Kinetoplastida — Trypanosomatidae). Ann Parasitol Hum Comp 1991; 66:252–255 [View Article] [PubMed]
    [Google Scholar]
  3. WHO World Health Organization (WHO); 2023 https://www.who.int/news-room/fact-sheets/detail/leishmaniasis accessed 28 January 2023
  4. El Idrissi Saik I, Benlabsir C, Fellah H, Lemrani M, Riyad M. Transmission patterns of Leishmania tropica around the Mediterranean basin: could Morocco be impacted by a zoonotic spillover?. PLoS Negl Trop Dis 2022; 16:e0010009 [View Article] [PubMed]
    [Google Scholar]
  5. Marty P, Le Fichoux Y, Pratlong F, Rioux JA, Rostain G et al. Cutaneous leishmaniasis due to Leishmania tropica in a young Moroccan child observed in Nice, France. Trans R Soc Trop Med Hyg 1989; 83:510 [View Article] [PubMed]
    [Google Scholar]
  6. Pratlong F, Rioux J-A, Dereure J, Mahjour J, Gallego M et al. Leishmania tropica au Maroc. IV — Diversité isozymique intrafocale. Ann Parasitol Hum Comp 1991; 66:100–104 [View Article] [PubMed]
    [Google Scholar]
  7. Ait Kbaich M, Mhaidi I, Ezzahidi A, Dersi N, El Hamouchi A et al. New epidemiological pattern of cutaneous leishmaniasis in two Pre-Saharan arid provinces, southern Morocco. Acta Trop 2017; 173:11–16 [View Article] [PubMed]
    [Google Scholar]
  8. Guessous-Idrissi N, Chiheb S, Hamdani A, Riyad M, Bichichi M et al. Cutaneous leishmaniasis: an emerging epidemic focus of Leishmania tropica in north Morocco. Trans R Soc Trop Med Hyg 1997; 91:660–663 [View Article] [PubMed]
    [Google Scholar]
  9. Lemrani M, Nejjar R, Pratlong F. A new Leishmania tropica zymodeme--causative agent of canine visceral leishmaniasis in northern Morocco. Ann Trop Med Parasitol 2002; 96:637–638 [View Article] [PubMed]
    [Google Scholar]
  10. Aoun K, Bouratbine A. Cutaneous leishmaniasis in North Africa: a review. Parasite 2014; 21:14 [View Article] [PubMed]
    [Google Scholar]
  11. El Hamouchi A, El Kacem S, Ejghal R, Lemrani M. Genetic polymorphism in Leishmania infantum isolates from human and animals determined by nagt PCR-RFLP. Infect Dis Poverty 2018; 7:54 [View Article] [PubMed]
    [Google Scholar]
  12. El Kacem S, Kbaich MA, Daoui O, Charoute H, Mhaidi I et al. Multilocus sequence analysis provides new insight into population structure and genetic diversity of Leishmania tropica in Morocco. Infect Genet Evol 2021; 93:104932 [View Article] [PubMed]
    [Google Scholar]
  13. Späth GF, Bussotti G. GIP: an open-source computational pipeline for mapping Genomic instability from Protists to cancer cells. Nucleic Acid Res 2021 [View Article]
    [Google Scholar]
  14. Bussotti G, Gouzelou E, Côrtes Boité M, Kherachi I, Harrat Z et al. Leishmania genome dynamics during environmental adaptation reveal strain-specific differences in gene copy number variation, karyotype instability, and telomeric amplification. mBio 2018; 9:e01399-18 [View Article] [PubMed]
    [Google Scholar]
  15. Prieto Barja P, Pescher P, Bussotti G, Dumetz F, Imamura H et al. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat Ecol Evol 2017; 1:1961–1969 [View Article] [PubMed]
    [Google Scholar]
  16. Li H. Aligning sequence reads, clone sequences and assembly Con*Gs with BWA-MEM. arXiv 2014 [View Article]
    [Google Scholar]
  17. Unoarumhi Y, Batra D, Sheth M, Narayanan V, Lin W et al. Chromosome-level genome sequence of Leishmania (Leishmania) tropica strain CDC216-162, isolated from an Afghanistan clinical case. Microbiol Resour Announc 2021; 10:e00842–20
    [Google Scholar]
  18. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  19. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26:841–842 [View Article] [PubMed]
    [Google Scholar]
  20. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv 1207:
    [Google Scholar]
  21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [View Article] [PubMed]
    [Google Scholar]
  22. Steinbiss S, Silva-Franco F, Brunk B, Foth B, Hertz-Fowler C et al. Companion: a web server for annotation and analysis of parasite genomes. Nucleic Acids Res 2016; 44:W29–34 [View Article] [PubMed]
    [Google Scholar]
  23. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  24. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  25. Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 2011; 21:2143–2156 [View Article] [PubMed]
    [Google Scholar]
  26. Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM et al. Gene expression in Leishmania is regulated predominantly by gene dosage. mBio 2017; 8:e01393-17 [View Article] [PubMed]
    [Google Scholar]
  27. Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 2011; 21:2129–2142 [View Article] [PubMed]
    [Google Scholar]
  28. Handman E, Osborn AH, Symons F, van Driel R, Cappai R. The Leishmania promastigote surface antigen 2 complex is differentially expressed during the parasite life cycle. Mol Biochem Parasitol 1995; 74:189–200 [View Article] [PubMed]
    [Google Scholar]
  29. Das S, Banerjee A, Kamran M, Ejazi SA, Asad M et al. A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. J Biol Chem 2020; 295:9934–9947 [View Article] [PubMed]
    [Google Scholar]
  30. Siqueira-Neto JL, Debnath A, McCall L-I, Bernatchez JA, Ndao M et al. Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis 2018; 12:e0006512 [View Article] [PubMed]
    [Google Scholar]
  31. de Paiva RMC, Grazielle-Silva V, Cardoso MS, Nakagaki BN, Mendonça-Neto RP et al. Amastin knockdown in Leishmania braziliensis affects parasite-macrophage interaction and results in impaired viability of intracellular amastigotes. PLoS Pathog 2015; 11:e1005296 [View Article] [PubMed]
    [Google Scholar]
  32. Bussotti G, Piel L, Pescher P, Domagalska MA, Rajan KS et al. Genome instability drives epistatic adaptation in the human pathogen Leishmania. Proc Natl Acad Sci U S A 2021; 118:e2113744118 [View Article] [PubMed]
    [Google Scholar]
  33. Salloum T, Moussa R, Rahy R, Al Deek J, Khalifeh I et al. Expanded genome-wide comparisons give novel insights into population structure and genetic heterogeneity of Leishmania tropica complex. PLoS Negl Trop Dis 2020; 14:e0008684 [View Article] [PubMed]
    [Google Scholar]
  34. Glans H, Lind Karlberg M, Advani R, Bradley M, Alm E et al. High genome plasticity and frequent genetic exchange in Leishmania tropica isolates from Afghanistan, Iran and Syria. PLoS Negl Trop Dis 2021; 15:e0010110 [View Article] [PubMed]
    [Google Scholar]
  35. Shaw JJ, De Faria DL, Basano SA, Corbett CE, Rodrigues CJ et al. The aetiological agents of American cutaneous leishmaniasis in the municipality of Monte Negro, Rondônia state, western Amazonia, Brazil. Ann Trop Med Parasitol 2007; 101:681–688 [View Article] [PubMed]
    [Google Scholar]
  36. Guernaoui S, Boumezzough A, Laamrani A. Altitudinal structuring of sand flies (Diptera: Psychodidae) in the High-Atlas mountains (Morocco) and its relation to the risk of leishmaniasis transmission. Acta Trop 2006; 97:346–351 [View Article] [PubMed]
    [Google Scholar]
  37. Guilvard E, Rioux JA, Gallego M, Pratlong F, Mahjour J et al. Leishmania tropica in Morocco. III--The vector of Phlebotomus sergenti. Apropos of 89 isolates. Ann Parasitol Hum Comp 1991; 66:96–99 [View Article] [PubMed]
    [Google Scholar]
  38. Krayter L, Alam MZ, Rhajaoui M, Schnur LF, Schönian G. Multilocus microsatellite typing reveals intra-focal genetic diversity among strains of Leishmania tropica in Chichaoua province, Morocco. Infect Genet Evol 2014; 28:233–239 [View Article] [PubMed]
    [Google Scholar]
  39. El Hamouchi A, Ajaoud M, Arroub H, Charrel R, Lemrani M. Genetic diversity of Leishmania tropica in Morocco: does the dominance of one haplotype signify its fitness in both predominantly anthropophilic Phlebotomus sergenti and human beings?. Transbound Emerg Dis 2019; 66:373–380 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001230
Loading
/content/journal/mgen/10.1099/mgen.0.001230
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error