1887

Abstract

The ever-decreasing cost of sequencing and the growing potential applications of metagenomics have led to an unprecedented surge in data generation. One of the most prevalent applications of metagenomics is the study of microbial environments, such as the human gut. The gut microbiome plays a crucial role in human health, providing vital information for patient diagnosis and prognosis. However, analysing metagenomic data remains challenging due to several factors, including reference catalogues, sparsity and compositionality. Deep learning (DL) enables novel and promising approaches that complement state-of-the-art microbiome pipelines. DL-based methods can address almost all aspects of microbiome analysis, including novel pathogen detection, sequence classification, patient stratification and disease prediction. Beyond generating predictive models, a key aspect of these methods is also their interpretability. This article reviews DL approaches in metagenomics, including convolutional networks, autoencoders and attention-based models. These methods aggregate contextualized data and pave the way for improved patient care and a better understanding of the microbiome’s key role in our health.

Funding
This study was supported by the:
  • Agence Nationale de la Recherche (Award ANR-21-CE45-0030)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001231
2024-04-17
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/4/mgen001231.html?itemId=/content/journal/mgen/10.1099/mgen.0.001231&mimeType=html&fmt=ahah

References

  1. Marchesi JR, Ravel J. The vocabulary of microbiome research: a proposal. Microbiome 2015; 3:31 [View Article] [PubMed]
    [Google Scholar]
  2. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 2015; 348:1261359 [View Article] [PubMed]
    [Google Scholar]
  3. Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA et al. Structure and function of the global topsoil microbiome. Nature 2018; 560:233–237 [View Article] [PubMed]
    [Google Scholar]
  4. Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486:207–214 [View Article]
    [Google Scholar]
  5. Zimmerman S, Tierney BT, Patel CJ, Kostic AD. Quantifying shared and unique gene content across 17 microbial ecosystems. mSystems 2023; 8:e0011823 [View Article] [PubMed]
    [Google Scholar]
  6. Lee JY, Tsolis RM, Bäumler AJ. The microbiome and gut homeostasis. Science 2022; 377: [View Article]
    [Google Scholar]
  7. Gihawi A, Ge Y, Lu J, Puiu D, Xu A et al. Major data analysis errors invalidate cancer microbiome findings. mBio 2023; 14:e0160723 [View Article] [PubMed]
    [Google Scholar]
  8. Kennedy KM, de Goffau MC, Perez-Muñoz ME, Arrieta M-C, Bäckhed F et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613:639–649 [View Article]
    [Google Scholar]
  9. Tomofuji Y, Sonehara K, Kishikawa T, Maeda Y, Ogawa K et al. Reconstruction of the personal information from human genome reads in gut metagenome sequencing data. Nat Microbiol 2023; 8:1079–1094 [View Article] [PubMed]
    [Google Scholar]
  10. Pflughoeft KJ, Versalovic J. Human microbiome in health and disease. Annu Rev Pathol Mech Dis 2012; 7:99–122 [View Article]
    [Google Scholar]
  11. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500:541–546 [View Article] [PubMed]
    [Google Scholar]
  12. Qin N, Yang F, Li A, Prifti E, Chen Y et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513:59–64 [View Article] [PubMed]
    [Google Scholar]
  13. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528:262–266 [View Article]
    [Google Scholar]
  14. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N et al. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500:585–588 [View Article] [PubMed]
    [Google Scholar]
  15. Aron-Wisnewsky J, Prifti E, Belda E, Ichou F, Kayser BD et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut 2019; 68:70–82 [View Article] [PubMed]
    [Google Scholar]
  16. Pérez-Cobas AE, Gomez-Valero L, Buchrieser C. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb Genom 2020; 6:mgen000409 [View Article] [PubMed]
    [Google Scholar]
  17. Zheng W, Tsompana M, Ruscitto A, Sharma A, Genco R et al. An accurate and efficient experimental approach for characterization of the complex oral microbiota. Microbiome 2015; 3:48 [View Article] [PubMed]
    [Google Scholar]
  18. Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 2007; 69:330–339 [View Article] [PubMed]
    [Google Scholar]
  19. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 2020; 38:685–688 [View Article] [PubMed]
    [Google Scholar]
  20. Benítez-Páez A, Hartstra AV, Nieuwdorp M, Sanz Y. Species- and strain-level assessment using rrn long-amplicons suggests donor’s influence on gut microbial transference via fecal transplants in metabolic syndrome subjects. Gut Microbes 2022; 14:2078621 [View Article] [PubMed]
    [Google Scholar]
  21. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004; 428:37–43 [View Article] [PubMed]
    [Google Scholar]
  22. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 2017; 35:833–844 [View Article] [PubMed]
    [Google Scholar]
  23. Mobley I. Long-read sequencing vs short-read sequencing; 2021 https://frontlinegenomics.com/long-read-sequencing-vs-short-read-sequencing/
  24. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008; 456:53–59 [View Article] [PubMed]
    [Google Scholar]
  25. Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinform 2015; 13:278–289 [View Article] [PubMed]
    [Google Scholar]
  26. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 2021; 39:1348–1365 [View Article] [PubMed]
    [Google Scholar]
  27. Sereika M, Kirkegaard RH, Karst SM, Michaelsen TY, Sørensen EA et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat Methods 2022; 19:823–826 [View Article]
    [Google Scholar]
  28. Sanderson ND, Kapel N, Rodger G, Webster H, Lipworth S et al. Comparison of R9.4.1/Kit10 and R10/Kit12 Oxford Nanopore flowcells and chemistries in bacterial genome reconstruction. Microb Genom 2023; 9:mgen000910 [View Article]
    [Google Scholar]
  29. AltschuP SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool
    [Google Scholar]
  30. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [View Article] [PubMed]
    [Google Scholar]
  31. Kang DD, Li F, Kirton E, Thomas A, Egan R et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019; 7:e7359 [View Article] [PubMed]
    [Google Scholar]
  32. Liu C-C, Dong S-S, Chen J-B, Wang C, Ning P et al. MetaDecoder: a novel method for clustering metagenomic contigs. Microbiome 2022; 10:46 [View Article] [PubMed]
    [Google Scholar]
  33. Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 2014; 32:822–828 [View Article] [PubMed]
    [Google Scholar]
  34. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol 2021; 39:105–114 [View Article] [PubMed]
    [Google Scholar]
  35. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N et al. Extensive unexplored human microbiome diversity revealed by Over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019; 176:649–662 [View Article] [PubMed]
    [Google Scholar]
  36. Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of the global human gut microbiome. Nature 2019; 568:505–510 [View Article] [PubMed]
    [Google Scholar]
  37. Li J, Jia H, Cai X, Zhong H, Feng Q et al. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 2014; 32:834–841 [View Article]
    [Google Scholar]
  38. Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH et al. A catalog of reference genomes from the human microbiome. Science 2010; 328:994–999 [View Article]
    [Google Scholar]
  39. Coelho LP, Alves R, Del Río ÁR, Myers PN, Cantalapiedra CP et al. Towards the biogeography of prokaryotic genes. Nature 2022; 601:252–256 [View Article] [PubMed]
    [Google Scholar]
  40. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res 2007; 17:377–386 [View Article] [PubMed]
    [Google Scholar]
  41. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article] [PubMed]
    [Google Scholar]
  42. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res 2016; 26:1721–1729 [View Article]
    [Google Scholar]
  43. Blanco-Miguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species with MetaPhlAn 4. Bioinformatics 2022 [View Article]
    [Google Scholar]
  44. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res 2022; 50:D785–D794 [View Article] [PubMed]
    [Google Scholar]
  45. Coelho LP, Alves R, del Río ÁR, Myers PN, Cantalapiedra CP et al. Towards the biogeography of prokaryotic genes. Nature 2022; 601:252–256 [View Article]
    [Google Scholar]
  46. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article]
    [Google Scholar]
  47. Saghir H, Megherbi DB. An efficient comparative machine learning-based metagenomics binning technique via using Random forest. In 2013 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) Milan, Italy: IEEE; 2013 pp 191–196
    [Google Scholar]
  48. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521:436–444 [View Article] [PubMed]
    [Google Scholar]
  49. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning New York, NY: Springer New York; 2009 [View Article]
    [Google Scholar]
  50. van Engelen JE, Hoos HH. A survey on semi-supervised learning. Mach Learn 2020; 109:373–440 [View Article]
    [Google Scholar]
  51. Babenko B. Multiple Instance Learning: Algorithms and Applications
    [Google Scholar]
  52. Gardner MW, Dorling SR. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos Environ 1998; 32:2627–2636 [View Article]
    [Google Scholar]
  53. Bottou L, Bousquet O. Optimization for machine learning; 2011 https://doi.org/10.7551/mitpress/8996.003.0015
  54. Basodi S, Ji C, Zhang H, Pan Y. Gradient amplification: an efficient way to train deep neural networks. Big Data Min Anal 2020; 3:196–207 [View Article]
    [Google Scholar]
  55. LeCun Y, Boser B, Denker JS, Henderson D, Howard RE et al. Backpropagation applied to handwritten zip code recognition. Neural Comput 1989; 1:541–551 [View Article]
    [Google Scholar]
  56. Al-Ajlan A, El Allali A. CNN-MGP: convolutional neural networks for metagenomics gene prediction. Interdiscip Sci Comput Life Sci 2019; 11:628–635 [View Article]
    [Google Scholar]
  57. Rahman MA, Rangwala H. IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data. n.d
  58. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997; 9:1735–1780 [View Article] [PubMed]
    [Google Scholar]
  59. Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F. n.d. Learning phrase representations using RNN Encoder-Decoder for statistical machine translation". Association for computational linguistics. arXiv
    [Google Scholar]
  60. Chu Y, Guo S, Cui D, Fu X, Ma Y. DeephageTP: a convolutional neural network framework for identifying phage-specific proteins from metagenomic sequencing data. PeerJ 2022; 10:e13404 [View Article] [PubMed]
    [Google Scholar]
  61. Li X, Hu P. Constructing long short-term memory networks to predict ulcerative colitis progression from longitudinal gut microbiome profiles. UTJPH 2021; 2: [View Article]
    [Google Scholar]
  62. Chen X, Liu L, Zhang W, Yang J, Wong K-C. Human host status inference from temporal microbiome changes via recurrent neural networks. Brief Bioinform 2021; 22:bbab223 [View Article] [PubMed]
    [Google Scholar]
  63. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw 2015; 61:85–117 [View Article] [PubMed]
    [Google Scholar]
  64. Kingma DP, Welling M. Auto-encoding variational Bayes [Internet]. arXiv; 2022 http://arxiv.org/abs/1312.6114 accessed 23 February 2022
  65. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In Navab N, Hornegger J, Wells WM, Frangi AF. eds Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015Lecture Notes in Computer Science vol 9351 Cham: Springer International Publishing; 2015 pp 234–241
    [Google Scholar]
  66. Oh M, Zhang L. DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci Rep 2020; 10:6026 [View Article] [PubMed]
    [Google Scholar]
  67. Nissen JN, Johansen J, Allesøe RL, Sønderby CK, Armenteros JJA et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat Biotechnol 2021; 39:555–560 [View Article] [PubMed]
    [Google Scholar]
  68. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L et al. Attention is all you need [Internet]. arXiv; 2023 http://arxiv.org/abs/1706.03762 accessed 27 November 2023
  69. Rudin C. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat Mach Intell 2019; 1:206–215 [View Article] [PubMed]
    [Google Scholar]
  70. Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: tools and biological insights. PLoS Comput Biol 2016; 12:e1004977 [View Article] [PubMed]
    [Google Scholar]
  71. Tonkovic P, Kalajdziski S, Zdravevski E, Lameski P, Corizzo R et al. Literature on applied machine learning in metagenomic classification: a scoping review. Biology (Basel) 2020; 9:453 [View Article] [PubMed]
    [Google Scholar]
  72. Hernández Medina R, Kutuzova S, Nielsen KN, Johansen J, Hansen LH et al. Machine learning and deep learning applications in microbiome research. ISME Communications 2022; 2:98 [View Article]
    [Google Scholar]
  73. Geman O, Chiuchisan I, Covasa M, Doloc C, Milici MR et al. Deep learning tools for human microbiome big data. In Balas V, Jain L, Balas M. eds Soft Computing Applications. SOFA 2016. Advances in Intelligent Systems and Computing vol 633 Cham: Springer; 2018 [View Article]
    [Google Scholar]
  74. Mathieu A, Leclercq M, Sanabria M, Perin O, Droit A. Machine learning and deep learning applications in metagenomic taxonomy and functional annotation. Front Microbiol 2022; 13:811495 [View Article] [PubMed]
    [Google Scholar]
  75. LaPierre N, Ju CJ-T, Zhou G, Wang W. MetaPheno: a critical evaluation of deep learning and machine learning in metagenome-based disease prediction. Methods 2019; 166:74–82 [View Article]
    [Google Scholar]
  76. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R et al. HMMER web server: 2018 update. Nucleic Acids Res 2018; 46:W200–W204 [View Article]
    [Google Scholar]
  77. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 2017; 35:1026–1028 [View Article] [PubMed]
    [Google Scholar]
  78. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol 2017; 35:1026–1028 [View Article] [PubMed]
    [Google Scholar]
  79. Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 2018; 6:23 [View Article] [PubMed]
    [Google Scholar]
  80. Zhang SW, Jin XY, Zhang T. Gene prediction in metagenomic fragments with deep learning. Biomed Res Int 2017; 2017:4740354 [View Article] [PubMed]
    [Google Scholar]
  81. Zha Y, Chong H, Qiu H, Kang K, Dun Y et al. Ontology-aware deep learning enables ultrafast and interpretable source tracking among sub-million microbial community samples from hundreds of niches. Genome Med 2022; 14:43 [View Article] [PubMed]
    [Google Scholar]
  82. Fang Z, Tan J, Wu S, Li M, Wang C et al. PlasGUN: gene prediction in plasmid metagenomic short reads using deep learning. Bioinformatics 2020; 36:3239–3241 [View Article] [PubMed]
    [Google Scholar]
  83. Fang Z, Tan J, Wu S, Li M, Xu C et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. Gigascience 2019; 8:giz066 [View Article] [PubMed]
    [Google Scholar]
  84. Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 2017; 5:69 [View Article] [PubMed]
    [Google Scholar]
  85. Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA et al. Identifying viruses from metagenomic data using deep learning. Quant Biol 2020; 8:64–77 [View Article]
    [Google Scholar]
  86. Liu F, Miao Y, Liu Y, Hou T. RNN-VirSeeker: a deep learning method for identification of short viral sequences from metagenomes. IEEE/ACM Trans Comput Biol and Bioinf 2020; 1–1:1 [View Article]
    [Google Scholar]
  87. Shang J, Sun Y. CHEER: HierarCHical taxonomic classification for viral mEtagEnomic data via deep leaRning. Methods 2021; 189:95–103 [View Article] [PubMed]
    [Google Scholar]
  88. Arisdakessian CG, Nigro OD, Steward GF, Poisson G, Belcaid M. CoCoNet: an efficient deep learning tool for viral metagenome binning. Bioinformatics 2021; 37:2803–2810 [View Article] [PubMed]
    [Google Scholar]
  89. Arango-Argoty GA, Heath LS, Pruden A, Vikesland PJ, Zhang L. MetaMLP: a fast word embedding based classifier to profile target gene databases in metagenomic samples. J Comput Biol 2021; 28:1063–1074 [View Article] [PubMed]
    [Google Scholar]
  90. Miao Y, Bian J, Dong G, Dai T. DETIRE: a hybrid deep learning model for identifying viral sequences from metagenomes. Front Microbiol 2023; 14:1169791 [View Article] [PubMed]
    [Google Scholar]
  91. Liu Q, Liu F, Miao Y, He J, Dong T et al. Virsearcher: identifying bacteriophages from metagenomes by combining convolutional neural network and gene information. IEEE/ACM Trans Comput Biol and Bioinf 2023; 20:763–774 [View Article]
    [Google Scholar]
  92. Abdelkareem AO, Khalil MI, Elaraby M, Abbas H, Elbehery AHA. VirNet: Deep attention model for viral reads identification. In 2018 13th International Conference on Computer Engineering and Systems (ICCES) Cairo, Egypt: IEEE; 2018 pp 623–626 [View Article]
    [Google Scholar]
  93. Gwak HJ, Rho M. ViBE: a hierarchical BERT model to identify eukaryotic viruses using metagenome sequencing data. Brief Bioinform 2022; 23:bbac204 [View Article] [PubMed]
    [Google Scholar]
  94. Ma Y, Guo Z, Xia B, Zhang Y, Liu X et al. Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nat Biotechnol 2022; 40:921–931 [View Article] [PubMed]
    [Google Scholar]
  95. Zhang Y, Li C, Feng H, Zhu D. DLmeta: a deep learning method for metagenomic identification. In 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) Las Vegas, NV, USA: 2022 pp 303–308 [View Article] [PubMed]
    [Google Scholar]
  96. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015; 3:e1165 [View Article] [PubMed]
    [Google Scholar]
  97. Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2014; 2:26 [View Article] [PubMed]
    [Google Scholar]
  98. Mallawaarachchi V, Wickramarachchi A, Lin Y. GraphBin: refined binning of metagenomic contigs using assembly graphs. Bioinformatics 2020; 36:3307–3313 [View Article] [PubMed]
    [Google Scholar]
  99. Mallawaarachchi VG, Wickramarachchi AS, Lin Y. GraphBin: refined binning of metagenomic contigs using assembly graphs. Bioinformatics 2020; 36:3307–3313 [View Article]
    [Google Scholar]
  100. Karagöz MA, Nalbantoglu OU. Taxonomic classification of metagenomic sequences from Relative Abundance Index profiles using deep learning. Biomed Signal Process Control 2021; 67:102539 [View Article]
    [Google Scholar]
  101. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S et al. Critical assessment of metagenome interpretation-a benchmark of metagenomics software. Nat Methods 2017; 14:1063–1071 [View Article] [PubMed]
    [Google Scholar]
  102. Busia A, Dahl GE, Fannjiang C, Alexander DH, Dorfman E et al. A deep learning approach to pattern recognition for short DNA sequences. n.d
  103. Mineeva O, Rojas-Carulla M, Ley RE, Schölkopf B, Youngblut ND. DeepMAsED: evaluating the quality of metagenomic assemblies. Bioinformatics 2020; 36:3011–3017 [View Article] [PubMed]
    [Google Scholar]
  104. Essinger SD, Polikar R, Rosen GL. Neural network-based taxonomic clustering for metagenomics. In The 2010 International Joint Conference on Neural Networks (IJCNN) [Internet] Barcelona, Spain: IEEE; 2010 pp 1–7
    [Google Scholar]
  105. Noble PA, Citek RW, Ogunseitan OA. Tetranucleotide frequencies in microbial genomes. Electrophoresis 1998; 19:528–535 [View Article] [PubMed]
    [Google Scholar]
  106. Fiannaca A, La Paglia L, La Rosa M, Lo Bosco G, Renda G et al. Deep learning models for bacteria taxonomic classification of metagenomic data. BMC Bioinformatics 2018; 19:198 [View Article] [PubMed]
    [Google Scholar]
  107. Mock F, Kretschmer F, Kriese A, Böcker S, Marz M. BERTax: taxonomic classification of DNA sequences with Deep Neural Networks. Bioinformatics 2021 [View Article]
    [Google Scholar]
  108. Maduranga U, Wijegunarathna K, Weerasinghe S, Perera I, Wickramarachchi A. Dimensionality reduction for cluster identification in metagenomics using autoencoders. In 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer Colombo, Sri Lanka: IEEE; 2020 pp 113–118 [View Article]
    [Google Scholar]
  109. Borgman J, Stark K, Carson J, Hauser L. Deep learning encoding for rapid sequence identification on microbiome data. Front Bioinform 2022; 2: [View Article]
    [Google Scholar]
  110. Woloszynek S, Zhao Z, Chen J, Rosen GL. 16S rRNA sequence embeddings: meaningful numeric feature representations of nucleotide sequences that are convenient for downstream analyses. PLoS Comput Biol 2019; 15:e1006721 [View Article] [PubMed]
    [Google Scholar]
  111. Bao HQ, Vinh LV, Van Hoai T. A deep embedded clustering algorithm for the binning of metagenomic sequences. IEEE Access 2022; 10:54348–54357 [View Article]
    [Google Scholar]
  112. Wijegunarathna K, Maduranga U, Weerasinghe S, Perera I, Wickaramarachchi A. Cluster identification in metagenomics – a novel technique of dimensionality reduction through autoencoders. Int J on Adv in ICT for Emerging Countries 2021; 14:9–18 [View Article]
    [Google Scholar]
  113. Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016; 32:605–607 [View Article] [PubMed]
    [Google Scholar]
  114. Zhang P, Jiang Z, Wang Y, Li Y. CLMB: deep Contrastive learning for robust Metagenomic Binning. Springer, Cham 2022 [View Article]
    [Google Scholar]
  115. Chen T, Kornblith S, Norouzi M, Hinton G. A Simple Framework for Contrastive Learning of Visual Representations [Internet]. arXiv; 2020 http://arxiv.org/abs/2002.05709 accessed 12 April 2023
  116. Piera Lindez P, Johansen J, Sigurdsson AI, Nissen JN, Rasmussen S. Adversarial and variational autoencoders improve metagenomic binning. Bioinformatics [View Article]
    [Google Scholar]
  117. Lamurias A, Tibo A, Hose K, Albertsen M, Nielsen TD. Metagenomic Binning using Connectivity-constrained Variational Autoencoders.
  118. Pan S, Zhu C, Zhao XM, Coelho LP. A deep siamese neural network improves metagenome-assembled genomes in microbiome datasets across different environments. Nat Commun 2022; 13:2326 [View Article] [PubMed]
    [Google Scholar]
  119. Wang Z, Wang Z, Lu YY, Sun F, Zhu S. SolidBin: improving metagenome binning with semi-supervised normalized cut. Bioinformatics 2019; 35:4229–4238 [View Article]
    [Google Scholar]
  120. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  121. Liang Q, Bible PW, Liu Y, Zou B, Wei L. DeepMicrobes: taxonomic classification for metagenomics with deep learning. NAR Genom Bioinform 2020; 2:lqaa009 [View Article] [PubMed]
    [Google Scholar]
  122. Mikolov T, Chen K, Corrado G, Dean J. Efficient Estimation of Word Representations in Vector Space [Internet]. arXiv; 2013 http://arxiv.org/abs/1301.3781 accessed 17 October 2022
  123. Matougui B, Boukelia A, Belhadef H, Galiez C, Batouche M. NLP-MeTaxa: a natural language processing approach for metagenomic taxonomic binning based on deep learning. CBIO 2021; 16:992–1003 [View Article]
    [Google Scholar]
  124. Menegaux R, Vert JP. Continuous embeddings of DNA sequencing reads and application to metagenomics. J Comput Biol 2019; 26:509–518 [View Article] [PubMed]
    [Google Scholar]
  125. Queyrel M, Prifti E, Templier A, Zucker JD. Towards end-to-end disease prediction from raw metagenomic data. Genomics 2020 [View Article]
    [Google Scholar]
  126. Georgiou A, Fortuin V, Mustafa H, Rätsch G. META$^\mathbf{2}$: Memory-efficient taxonomic classification and abundance estimation for metagenomics with deep learning arXiv; 2020 http://arxiv.org/abs/1909.13146 accessed 18 August 2022
  127. Menegaux R, Vert JP. Embedding the de Bruijn graph, and applications to metagenomics. Bioinformatics 2020 [View Article]
    [Google Scholar]
  128. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding arXiv; 2019 http://arxiv.org/abs/1810.04805 accessed 17 October 2022
  129. Tran VT, Quach HD, Van PVD, Tran VH. A novel metagenomic binning framework using NLP techniques in feature extraction. IPSJ Trans Bioinforma 2022; 15:1–8 [View Article]
    [Google Scholar]
  130. Mock F, Kretschmer F, Kriese A, Böcker S, Marz M. BERTax: taxonomic classification of DNA sequences with Deep Neural Networks. Bioinformatics 2021 [View Article]
    [Google Scholar]
  131. Zhou G, Jiang JY, Ju CJT, Wang W. Prediction of microbial communities for urban metagenomics using neural network approach. Hum Genomics 2019; 13:47 [View Article] [PubMed]
    [Google Scholar]
  132. Prifti E, Chevaleyre Y, Hanczar B, Belda E, Danchin A et al. Interpretable and accurate prediction models for metagenomics data. Gigascience 2020; 9:giaa010 [View Article] [PubMed]
    [Google Scholar]
  133. Michel‐Mata S, Wang X, Liu Y, Angulo MT. Predicting microbiome compositions from species assemblages through deep learning. iMeta 2022; 1: [View Article]
    [Google Scholar]
  134. Calle ML. Statistical analysis of metagenomics data. Genomics Inform 2019; 17:e6 [View Article] [PubMed]
    [Google Scholar]
  135. Reiman D, Dai Y. Using Conditional Generative Adversarial Networks to Boost the Performance of Machine Learning in Microbiome Datasets. n.d
  136. Mulenga M, Abdul Kareem S, Qalid Md Sabri A, Seera M, Govind S et al. Feature extension of gut microbiome data for deep neural network-based colorectal cancer classification. IEEE Access 2021; 9:23565–23578 [View Article]
    [Google Scholar]
  137. Lo C, Marculescu R. MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks. BMC Bioinformatics 2019; 20:314 [View Article] [PubMed]
    [Google Scholar]
  138. Elreedy D, Atiya AF. A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance. Inform Sci 2019; 505:32–64 [View Article]
    [Google Scholar]
  139. Khan S, Kelly L. Multiclass disease classification from microbial whole-community metagenomes using graph convolutional neural networks. Bioinformatics 2019 [View Article] [PubMed]
    [Google Scholar]
  140. Mulenga M, Kareem SA, Sabri AQM, Seera M. Stacking and chaining of normalization methods in deep learning-based classification of colorectal cancer using gut microbiome data. IEEE Access 2021; 9:97296–97319 [View Article]
    [Google Scholar]
  141. Nguyen TH, Phan TT, Dao CT, Ta DVP, Nguyen TNC et al. Effective disease prediction on gene family abundance using feature selection and binning approach. In Kim H, Kim KJ. eds IT Convergence and Security [Internet] vol 712 Singapore: Springer Singapore; 2021 pp 19–28 http://link.springer.com/10.1007/978-981-15-9354-3_2
    [Google Scholar]
  142. Phan NYK, Nguyen HT. Binning on metagenomic data for disease prediction using linear discriminant analysis and K-means. In Anh NL, Koh SJ, Nguyen TDL, Lloret J, Nguyen TT. eds Intelligent Systems and Networks Singapore: Springer Nature Singapore; 2022 pp 402–409 [View Article]
    [Google Scholar]
  143. Wickramaratne D, Wijesinghe R, Weerasinghe R. Human gut microbiome data analysis for disease likelihood prediction using autoencoders. In 2021 21st International Conference on Advances in ICT for Emerging Regions (ICter) Colombo, Sri Lanka: 2021 pp 49–54 [View Article]
    [Google Scholar]
  144. Shen Y, Zhu J, Deng Z, Lu W, Wang H. Ensdeepdp: an ensemble deep learning approach for disease prediction through Metagenomics. IEEE/ACM Trans Comput Biol Bioinform 2022; 1–14:
    [Google Scholar]
  145. Tataru C, Eaton A, David MM. GMEmbeddings: an R package to apply embedding techniques to microbiome data. Front Bioinform 2022; 2:828703 [View Article] [PubMed]
    [Google Scholar]
  146. Pennington J, Socher R, Manning C. Glove: global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) Doha, Qatar Stroudsburg, PA, USA: Association for Computational Linguistics; 2014 pp 1532–1543 [View Article]
    [Google Scholar]
  147. Tataru CA, David MM. Decoding the language of microbiomes using word-embedding techniques, and applications in inflammatory bowel disease. PLoS Comput Biol 2020; 16:e1007859 [View Article] [PubMed]
    [Google Scholar]
  148. Asgari E, Garakani K, McHardy AC, Mofrad MRK. MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples. Bioinformatics 2018; 34:i32–i42 [View Article] [PubMed]
    [Google Scholar]
  149. Strocchi M, Corso G, Liò P. Representation counts: the impact of embedding models on disease detection tasks from microbiome sequencing data. n.d
  150. Corso G, Ying R, Pándy M, Veličković P, Leskovec J et al. Neural Distance Embeddings for Biological Sequences [Internet]. arXiv; 2021 http://arxiv.org/abs/2109.09740 accessed 7 October 2022
  151. Wang J, Zucker JD. Solving the Multiple-Instance Problem: A Lazy Learning Approach.
  152. Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov R. Deep Sets [Internet]. arXiv; 2018 http://arxiv.org/abs/1703.06114 accessed 23 February 2023
  153. Lee J, Lee Y, Kim J, Kosiorek AR, Choi S et al. Set transformer: a framework for attention-based permutation-invariant neural networks [Internet]. arXiv. n.d http://arxiv.org/abs/1810.00825 accessed 23 February 2023
  154. Wang Y, Bhattacharya T, Jiang Y, Qin X, Wang Y et al. A novel deep learning method for predictive modeling of microbiome data. Brief Bioinform 2021; 22:bbaa073 [View Article] [PubMed]
    [Google Scholar]
  155. Sharma D, Paterson AD, Xu W. TaxoNN: ensemble of neural networks on stratified microbiome data for disease prediction. Bioinformatics 2020; 36:4544–4550 [View Article]
    [Google Scholar]
  156. Fioravanti D, Giarratano Y, Maggio V, Agostinelli C, Chierici M et al. Phylogenetic convolutional neural networks in metagenomics. BMC Bioinformatics 2018; 19: [View Article]
    [Google Scholar]
  157. Reiman D, Metwally AA, Sun J, Dai Y. PopPhy-CNN: a phylogenetic tree embedded architecture for convolutional neural networks to predict host phenotype from metagenomic data. IEEE J Biomed Health Inform 2020; 24:2993–3001 [View Article] [PubMed]
    [Google Scholar]
  158. Li B, Zhong D, Jiang X, He T. TopoPhy-CNN: Integrating Topological Information of Phylogenetic Tree for Host Phenotype Prediction From Metagenomic Data; 2021
  159. Nguyen TH, Prifti E, Chevaleyre Y, Sokolovska N, Zucker JD. Disease Classification in Metagenomics with 2D Embeddings and Deep Learning. ArXiv180609046 Cs [Internet]. n.d http://arxiv.org/abs/1806.09046 accessed 18 May 2022
  160. Pfeil J, Siptroth J, Pospisil H, Frohme M, Hufert FT et al. Classification of microbiome data from type 2 diabetes mellitus individuals with deep learning image recognition. BDCC 2023; 7:51 [View Article]
    [Google Scholar]
  161. Shen WX, Liang SR, Jiang YY, Chen YZ. Enhanced metagenomic deep learning for disease prediction and consistent signature recognition by restructured microbiome 2D representations. Patterns 2023; 4:100658 [View Article] [PubMed]
    [Google Scholar]
  162. Chen X, Zhu Z, Zhang W, Wang Y, Wang F et al. Human disease prediction from microbiome data by multiple feature fusion and deep learning. iScience 2022; 25:104081 [View Article] [PubMed]
    [Google Scholar]
  163. Zhu Q, Jiang X, Zhu Q, Pan M, He T. Graph embedding deep learning guides microbial biomarkers’ identification. Front Genet 2019; 10:1182 [View Article] [PubMed]
    [Google Scholar]
  164. Casimiro-Soriguer CS, Loucera C, Peña-Chilet M, Dopazo J. Interpretable machine learning analysis of functional metagenomic profiles improves colorectal cancer prediction and reveals basic molecular mechanisms. [Internet]. In Review; 2020 https://www.researchsquare.com/article/rs-12218/v1 accessed 28 July 2022
  165. Guo S, Zhang H, Chu Y, Jiang Q, Ma Y. A neural network‐based framework to understand the type 2 diabetes‐related alteration of the human gut microbiome. iMeta 2022; 1: [View Article]
    [Google Scholar]
  166. Lee SJ, Rho M. Multimodal deep learning applied to classify healthy and disease states of human microbiome. Sci Rep 2022; 12:824 [View Article] [PubMed]
    [Google Scholar]
  167. Casimiro-Soriguer CS, Loucera C, Peña-Chilet M, Dopazo J. Towards a metagenomics machine learning interpretable model for understanding the transition from adenoma to colorectal cancer. Sci Rep 2022; 12:450 [View Article] [PubMed]
    [Google Scholar]
  168. Melnyk K, Klus S, Montavon G, Conrad TOF. GraphKKE: graph Kernel Koopman embedding for human microbiome analysis. Appl Netw Sci 2020; 5: [View Article]
    [Google Scholar]
  169. Metwally AA, Yu PS, Reiman D, Dai Y, Finn PW et al. Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks. PLoS Comput Biol 2019; 15:e1006693 [View Article] [PubMed]
    [Google Scholar]
  170. Sharma D, Xu W. phyLoSTM: a novel deep learning model on disease prediction from longitudinal microbiome data. Bioinformatics 2021; 37:3707–3714 [View Article]
    [Google Scholar]
  171. Fung DLX, Li X, Leung CK, Hu P. A self-knowledge distillation-driven CNN-LSTM model for predicting disease outcomes using longitudinal microbiome data. Bioinform Adv 2023; 3:vbad059 [View Article] [PubMed]
    [Google Scholar]
  172. Zhang L, Bao C, Ma K. Self-distillation: towards efficient and compact neural networks. IEEE Trans Pattern Anal Mach Intell 2022; 44:4388–4403 [View Article] [PubMed]
    [Google Scholar]
  173. Hinton G, Vinyals O, Dean J. Distilling the Knowledge in a Neural Network. n.d http://arxiv.org/abs/1503.02531 accessed 17 July 2023
  174. Maringanti VS, Bucci V, Gerber GK. MDITRE: scalable and interpretable machine learning for predicting host status from temporal microbiome dynamics. Bioinformatics 2021 [View Article]
    [Google Scholar]
  175. Asher EE, Bashan A. Model-free prediction of microbiome compositions. Microbiology 2022 [View Article]
    [Google Scholar]
  176. García-Jiménez B, Muñoz J, Cabello S, Medina J, Wilkinson MD. Predicting microbiomes through a deep latent space. Bioinformatics 2021; 37:1444–1451 [View Article] [PubMed]
    [Google Scholar]
  177. Rampelli S, Fabbrini M, Candela M, Biagi E, Brigidi P et al. G2S: a new deep learning tool for predicting stool microbiome structure from oral microbiome data. Front Genet 2021; 12:644516 [View Article] [PubMed]
    [Google Scholar]
  178. Baranwal M, Clark RL, Thompson J, Sun Z, Hero AO et al. Deep learning enables design of multifunctional synthetic human gut microbiome dynamics. Syst Biol 2021 [View Article]
    [Google Scholar]
  179. Voigt AY, Costea PI, Kultima JR, Li SS, Zeller G et al. Temporal and technical variability of human gut metagenomes. Genome Biol 2015; 16: [View Article]
    [Google Scholar]
  180. Nearing JT, Comeau AM, Langille MGI. Identifying biases and their potential solutions in human microbiome studies. Microbiome 2021; 9:113 [View Article] [PubMed]
    [Google Scholar]
  181. Maghini DG, Dvorak M, Dahlen A, Roos M, Kuersten S et al. Quantifying bias introduced by sample collection in relative and absolute microbiome measurements. Nat Biotechnol 2024; 42:328–338 [View Article]
    [Google Scholar]
  182. Smith RH, Glendinning L, Walker AW, Watson M. Investigating the impact of database choice on the accuracy of metagenomic read classification for the rumen microbiome. Anim Microbiome 2022; 4:57 [View Article]
    [Google Scholar]
  183. Méric G, Wick RR, Watts SC, Holt KE, Inouye M. Correcting index databases improves metagenomic studies. biorxiv [View Article]
    [Google Scholar]
  184. Lloréns-Rico V, Vieira-Silva S, Gonçalves PJ, Falony G, Raes J. Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases. Nat Commun 2021; 12:3562 [View Article] [PubMed]
    [Google Scholar]
  185. Lin H, Peddada SD. Analysis of microbial compositions: a review of normalization and differential abundance analysis. NPJ Biofilms Microbiomes 2020; 6:60 [View Article] [PubMed]
    [Google Scholar]
  186. Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017; 551:507–511 [View Article] [PubMed]
    [Google Scholar]
  187. McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 2014; 10:e1003531 [View Article] [PubMed]
    [Google Scholar]
  188. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 2017; 5:27 [View Article]
    [Google Scholar]
  189. Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat Commun 2022; 13:342 [View Article]
    [Google Scholar]
  190. Yang L, Chen J. A comprehensive evaluation of microbial differential abundance analysis methods: current status and potential solutions. Microbiome 2022; 10:130 [View Article]
    [Google Scholar]
  191. Costea PI, Zeller G, Sunagawa S, Pelletier E, Alberti A et al. Towards standards for human fecal sample processing in metagenomic studies. Nat Biotechnol 2017; 35:1069–1076 [View Article] [PubMed]
    [Google Scholar]
  192. Szóstak N, Szymanek A, Havránek J, Tomela K, Rakoczy M et al. The standardisation of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling. Sci Rep 2022; 12:8470 [View Article]
    [Google Scholar]
  193. Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V et al. Accessible, curated metagenomic data through ExperimentHub. Nat Methods 2017; 14:1023–1024 [View Article] [PubMed]
    [Google Scholar]
  194. Gonzalez A, Navas-Molina JA, Kosciolek T, McDonald D, Vázquez-Baeza Y et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods 2018; 15:796–798 [View Article]
    [Google Scholar]
  195. Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020; 579:567–574 [View Article]
    [Google Scholar]
  196. Gihawi A, Ge Y, Lu J, Puiu D, Xu A et al. Major data analysis errors invalidate cancer microbiome findings. mBio 2023; 14:e0160723 [View Article] [PubMed]
    [Google Scholar]
  197. Abdill RJ, Adamowicz EM, Blekhman R. Public human microbiome data are dominated by highly developed countries. PLoS Biol 2022; 20:e3001536 [View Article]
    [Google Scholar]
  198. Wu G, Zhao N, Zhang C, Lam YY, Zhao L. Guild-based analysis for understanding gut microbiome in human health and diseases. Genome Med 2021; 13:22 [View Article] [PubMed]
    [Google Scholar]
  199. Nagpal S, Singh R, Taneja B, Mande SS. MarkerML - marker feature identification in metagenomic datasets using interpretable machine learning. J Mol Biol 2022; 434:167589 [View Article] [PubMed]
    [Google Scholar]
  200. Liao N-S, Hung Y-M, Tsai Y-J, Phan NN, Chen P-C et al. Abstract 3032: a novel deep learning pipeline for early detection of colorectal cancer and colorectal adenoma using gut microbiome data. Cancer Res 2023; 83:3032 [View Article]
    [Google Scholar]
  201. Zvyagin M, Brace A, Hippe K, Deng Y, Zhang B et al. GenSLMs: genome-scale language models reveal SARS-CoV-2 evolutionary dynamics. bioRxiv 20222022.10.10.511571 [View Article] [PubMed]
    [Google Scholar]
  202. Gwak HJ, Rho M. ViBE: a hierarchical BERT model to identify eukaryotic viruses using metagenome sequencing data. Brief Bioinform 2022; 23:bbac204 [View Article] [PubMed]
    [Google Scholar]
  203. Kouchaki S, Tirunagari S, Tapinos A, Robertson DL. Marginalised stack denoising autoencoders for metagenomic data binning. In 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) Manchester, United Kingdom: IEEE; 2017 pp 1–6 [View Article]
    [Google Scholar]
  204. Matougui B, Batouche M, Boukelia A. A K-mer based Multi Convolutional Neural Network Classifier of Low-Ranking Taxonomic Bins from Metagenome. n.d
  205. Liang K-C, Sakakibara Y. MetaVelvet-DL: a MetaVelvet deep learning extension for de novo metagenome assembly. BMC Bioinformatics 2021; 22:427 [View Article] [PubMed]
    [Google Scholar]
  206. Arisdakessian CG, Nigro OD, Steward GF, Poisson G, Belcaid M. CoCoNet: an efficient deep learning tool for viral metagenome binning. Bioinformatics 2021; 37:2803–2810 [View Article] [PubMed]
    [Google Scholar]
  207. Oh M, Zhang L. DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci Rep 2020; 10: [View Article]
    [Google Scholar]
  208. Rahman MA, Rangwala H. IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data. n.d
  209. Hello CTL CTL for Test Information of Digital ICS Boston, MA: Springer; 2002 [View Article]
    [Google Scholar]
  210. Nguyen HT, Bao T, Hoang H, Phuoc T, C. N. Improving disease prediction using shallow convolutional neural networks on metagenomic data visualizations based on mean-shift clustering algorithm. IJACSA 2020; 11: [View Article]
    [Google Scholar]
  211. Reiman D, Metwally AA, Sun J, Dai Y. Meta-Signer: metagenomic signature identifier based on rank aggregation of features. Bioinformatics 2020 [View Article]
    [Google Scholar]
  212. Mreyoud Y, Song M, Lim J, Ahn TH. MegaD: deep learning for rapid and accurate disease status prediction of metagenomic samples. Life 2022; 12:669 [View Article] [PubMed]
    [Google Scholar]
  213. Ditzler G, Polikar R, Rosen G. Multi-layer and recursive neural networks for metagenomic classification. IEEE Trans Nanobioscience 2015; 14:608–616 [View Article] [PubMed]
    [Google Scholar]
  214. Mreyoud Y, Ahn TH. Deep neural network modeling for phenotypic prediction of metagenomic samples. In BCB’20 Virtual Event USA New York, NY, USA: ACM; 2020 [View Article]
    [Google Scholar]
  215. Galkin F, Mamoshina P, Aliper A, Putin E, Moskalev V et al. Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience 2020; 23:101199 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001231
Loading
/content/journal/mgen/10.1099/mgen.0.001231
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error