1887

Abstract

(Enterobacterales: Erwiniaceae) are a group of cosmopolitan bacteria best known as the causative agents of various plant diseases. However, other species in this genus have been found to play important roles as insect endosymbionts supplementing the diet of their hosts. Here, I describe Erwinia impunctatus (Erwimp) associated with the Highland midge (Diptera: Ceratopogonidae), an abundant biting pest in the Scottish Highlands. The genome of this new species was assembled using hybrid long and short read techniques, and a comparative analysis was undertaken with other members of the genus to understand its potential ecological niche and impact. Genome composition analysis revealed that Erwimp is similar to other endophytic and ectophytic species in the genus and is unlikely to be restricted to its insect host. Evidence for an additional plant host includes the presence of a carotenoid synthesis operon implicated as a virulence factor in plant-associated members in the sister genus . Unique features of Erwimp include several copies of intimin-like proteins which, along with signs of genome pseudogenization and a loss of certain metabolic pathways, suggests an element of host restriction seen elsewhere in the genus. Furthermore, a screening of individuals over two field seasons revealed the absence of the bacteria in during the second year indicating this microbe-insect interaction is likely to be transient. These data suggest that may have an important role to play beyond a biting nuisance, as an insect vector transmitting Erwimp alongside any conferred impacts to surrounding biota.

Funding
This study was supported by the:
  • Wellcome Trust (Award 204822/Z/16/Z)
    • Principle Award Recipient: JackPilgrim
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001242
2024-04-17
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/4/mgen001242.html?itemId=/content/journal/mgen/10.1099/mgen.0.001242&mimeType=html&fmt=ahah

References

  1. Ferrari J, Vavre F. Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc Lond B Biol Sci 2011; 366:1389–1400 [View Article] [PubMed]
    [Google Scholar]
  2. Engelstädter J, Hurst GDD. The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 2009; 40:127–149 [View Article]
    [Google Scholar]
  3. Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 2008; 6:e2 [View Article] [PubMed]
    [Google Scholar]
  4. Hamilton PT, Peng F, Boulanger MJ, Perlman SJ. A ribosome-inactivating protein in A Drosophila defensive symbiont. Proc Natl Acad Sci U S A 2016; 113:350–355 [View Article] [PubMed]
    [Google Scholar]
  5. Douglas AE. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 1998; 43:17–37 [View Article] [PubMed]
    [Google Scholar]
  6. Manzano-Marín A, Oceguera-Figueroa A, Latorre A, Jiménez-García LF, Moya A. Solving a bloody mess: B-vitamin independent metabolic convergence among gammaproteobacterial obligate endosymbionts from blood-feeding arthropods and the leech Haementeria officinalis. Genome Biol Evol 2015; 7:2871–2884 [View Article] [PubMed]
    [Google Scholar]
  7. Sela S, Nestel D, Pinto R, Nemny-Lavy E, Bar-Joseph M. Mediterranean fruit fly as a potential vector of bacterial pathogens. Appl Environ Microbiol 2005; 71:4052–4056 [View Article] [PubMed]
    [Google Scholar]
  8. Picciotti U, Araujo Dalbon V, Ciancio A, Colagiero M, Cozzi G et al. “Ectomosphere”: insects and microorganism interactions. Microorganisms 2023; 11:440 [View Article] [PubMed]
    [Google Scholar]
  9. Menelas B, Block CC, Esker PD, Nutter FW. Quantifying the feeding periods required by corn flea beetles to acquire and transmit Pantoea stewartii. Plant Dis 2006; 90:319–324 [View Article] [PubMed]
    [Google Scholar]
  10. Manzano-Marín A, Coeur d’acier A, Clamens A-L, Orvain C, Cruaud C et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J 2020; 14:259–273 [View Article] [PubMed]
    [Google Scholar]
  11. Estes AM, Hearn DJ, Bronstein JL, Pierson EA. The olive fly endosymbiont, “Candidatus Erwinia dacicola,” switches from an intracellular existence to an extracellular existence during host insect development. Appl Environ Microbiol 2009; 75:7097–7106 [View Article] [PubMed]
    [Google Scholar]
  12. Ben-Yosef M, Pasternak Z, Jurkevitch E, Yuval B. Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen. J Evol Biol 2014; 27:2695–2705 [View Article] [PubMed]
    [Google Scholar]
  13. Emmett BJ, Baker LAE. Insect transmission of fireblight. Plant Pathol 1971; 20:41–45 [View Article]
    [Google Scholar]
  14. Sasu MA, Seidl-Adams I, Wall K, Winsor JA, Stephenson AG. Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo. Environ Entomol 2010; 39:140–148 [View Article] [PubMed]
    [Google Scholar]
  15. Palacio-Bielsa A, Roselló M, Llop P, López MM. Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species. Trees 2012; 26:13–29 [View Article]
    [Google Scholar]
  16. Baltrus DA, Dougherty K, Arendt KR, Huntemann M, Clum A et al. Absence of genome reduction in diverse, facultative endohyphal bacteria. Microb Genom 2017; 3:e000101 [View Article] [PubMed]
    [Google Scholar]
  17. O’Hara CM, Steigerwalt AG, Hill BC, Miller JM, Brenner DJ. First report of a human isolate of Erwinia persicinus. J Clin Microbiol 1998; 36:248–250 [View Article] [PubMed]
    [Google Scholar]
  18. Shin SY, Lee MY, Song JH, Ko KS. New Erwinia-like organism causing cervical lymphadenitis. J Clin Microbiol 2008; 46:3156–3158 [View Article] [PubMed]
    [Google Scholar]
  19. Boorman J, Goddard P. Observations on the biology of Culicoides impunctatus Goetgh. (Dipt., Ceratopogonidae) in southern England. Bull Entomol Res 1970; 60:189–198 [View Article] [PubMed]
    [Google Scholar]
  20. Davison HR, Pilgrim J, Wybouw N, Parker J, Pirro S et al. Genomic diversity across the Rickettsia and “Candidatus Megaira” genera and proposal of genus status for the Torix group. Nat Commun 2022; 13:2630 [View Article] [PubMed]
    [Google Scholar]
  21. De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 2018; 34:2666–2669 [View Article] [PubMed]
    [Google Scholar]
  22. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 2019; 37:540–546 [View Article] [PubMed]
    [Google Scholar]
  23. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018; 7:1–6 [View Article] [PubMed]
    [Google Scholar]
  24. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  25. Kang DD, Li F, Kirton E, Thomas A, Egan R et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019; 7:e7359 [View Article] [PubMed]
    [Google Scholar]
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  27. Bushnell B. BBMap: a fast, accurate, splice-aware aligner; 2014 https://sourceforge.net/projects/bbmap
  28. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article] [PubMed]
    [Google Scholar]
  29. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  30. Manni M, Berkeley MR, Seppey M, Zdobnov EM. BUSCO: assessing genomic data quality and beyond. Curr Protoc 2021; 1:e323 [View Article] [PubMed]
    [Google Scholar]
  31. Nishimura O, Hara Y, Kuraku S. gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinformatics 2017; 33:3635–3637 [View Article] [PubMed]
    [Google Scholar]
  32. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article] [PubMed]
    [Google Scholar]
  33. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res 2023; 51:W46–W50 [View Article] [PubMed]
    [Google Scholar]
  34. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2020; 6:3–6 [View Article]
    [Google Scholar]
  35. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article] [PubMed]
    [Google Scholar]
  36. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 2017; 14:587–589 [View Article] [PubMed]
    [Google Scholar]
  37. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  38. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  39. Wickham H. ggplot2. In Ggplot2: Elegant Graphics for Data Analysis New York, NY: 2009 [View Article]
    [Google Scholar]
  40. R studio team RStudio: Integrated development for R; 2022 http://www.rstudio.com/
  41. Syberg-Olsen MJ, Garber AI, Keeling PJ, McCutcheon JP, Husnik F. Pseudofinder: detection of Pseudogenes in prokaryotic genomes. Mol Biol Evol 2022; 39:msac153 [View Article] [PubMed]
    [Google Scholar]
  42. Tesson F, Hervé A, Mordret E, Touchon M, d’Humières C et al. Systematic and quantitative view of the antiviral arsenal of prokaryotes. Nat Commun 2022; 13:2561 [View Article] [PubMed]
    [Google Scholar]
  43. Veseli I, Chen YT, Schechter MS, Vanni C, Fogarty EC et al. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. bioRxiv 2023 [View Article]
    [Google Scholar]
  44. Gruber-Vodicka HR, Seah BKB, Pruesse E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems 2020; 5:e00920-20 [View Article] [PubMed]
    [Google Scholar]
  45. Piqué N, Miñana-Galbis D, Merino S, Tomás JM. Virulence factors of Erwinia amylovora: a review. Int J Mol Sci 2015; 16:12836–12854 [View Article] [PubMed]
    [Google Scholar]
  46. Bruto M, Prigent-Combaret C, Muller D, Moënne-Loccoz Y. Analysis of genes contributing to plant-beneficial functions in plant growth-promoting Rhizobacteria and related Proteobacteria. Sci Rep 2014; 4:6261 [View Article] [PubMed]
    [Google Scholar]
  47. Karp PD, Paley S, Krummenacker M, Kothari A, Wannemuehler MJ et al. Pathway tools management of pathway/genome data for microbial communities. Front Bioinform 2022; 2:869150 [View Article] [PubMed]
    [Google Scholar]
  48. Grant JR, Enns E, Marinier E, Mandal A, Herman EK et al. Proksee: in-depth characterization and visualization of bacterial genomes. Nucleic Acids Res 2023; 51:W484–W492 [View Article] [PubMed]
    [Google Scholar]
  49. Project Inkscape 2020; Available from https://inkscape.org
    [Google Scholar]
  50. Gilchrist CLM, Chooi YH. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 2021; 37:2473–2475 [View Article] [PubMed]
    [Google Scholar]
  51. Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL et al. InterPro in 2022. Nucleic Acids Res 2023; 51:D418–D427 [View Article] [PubMed]
    [Google Scholar]
  52. Pilgrim J, Ander M, Garros C, Baylis M, Hurst GDD et al. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ Microbiol 2017; 19:4238–4255 [View Article] [PubMed]
    [Google Scholar]
  53. Dallas JF, Cruickshank RH, Linton Y-M, Nolan DV, Patakakis M et al. Phylogenetic status and matrilineal structure of the biting midge, Culicoides imicola, in Portugal, Rhodes and Israel. Med Vet Entomol 2003; 17:379–387 [View Article] [PubMed]
    [Google Scholar]
  54. QGIS Development Team QGIS geographic information system; 2022 http://qgis.osgeo.org
  55. Coolen S, Magda M, Welte CU. The secret life of insect-associated microbes and how they shape insect-plant interactions. FEMS Microbiol Ecol 2022; 98:fiac083 [View Article] [PubMed]
    [Google Scholar]
  56. Capuzzo C, Firrao G, Mazzon L, Squartini A, Girolami V. Candidatus Erwinia dacicola”, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 2005; 55:1641–1647 [View Article] [PubMed]
    [Google Scholar]
  57. Estes AM, Hearn DJ, Agrawal S, Pierson EA, Dunning Hotopp JC. Comparative genomics of the Erwinia and Enterobacter olive fly endosymbionts. Sci Rep 2018; 8:15936 [View Article] [PubMed]
    [Google Scholar]
  58. Newton ILG, Bordenstein SR. Correlations between bacterial ecology and mobile DNA. Curr Microbiol 2011; 62:198–208 [View Article] [PubMed]
    [Google Scholar]
  59. Koczan JM, McGrath MJ, Zhao Y, Sundin GW. Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 2009; 99:1237–1244 [View Article] [PubMed]
    [Google Scholar]
  60. Tian Y, Zhao Y, Shi L, Cui Z, Hu B et al. Type VI secretion systems of Erwinia amylovora contribute to bacterial competition, virulence, and exopolysaccharide production. Phytopathology 2017; 107:654–661 [View Article] [PubMed]
    [Google Scholar]
  61. Holub EB. Natural history of Arabidopsis thaliana and oomycete symbioses. Eur J Plant Pathol 2008; 122:91–109 [View Article]
    [Google Scholar]
  62. Kettle DS. A study of the association between moorland vegetation and breeding sites of Culicoides (Diptera, Ceratopogonidae). Bull Entomol Res 1961; 52:381–411 [View Article]
    [Google Scholar]
  63. Carpenter S, Mordue W, Mordue (Luntz) J. Selection of resting areas by emerging Culicoides impunctatus (Diptera: Ceratopogonidae) on downy birch (Betula pubescens). Int J Pest Manag 2008; 54:39–42 [View Article]
    [Google Scholar]
  64. Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 2018; 9:1945 [View Article] [PubMed]
    [Google Scholar]
  65. Michael AJ. Polyamine function in archaea and bacteria. J Biol Chem 2018; 293:18693–18701 [View Article] [PubMed]
    [Google Scholar]
  66. Choi O, Kang B, Lee Y, Lee Y, Kim J. Pantoea ananatis carotenoid production confers toxoflavin tolerance and is regulated by Hfq-controlled quorum sensing. Microbiologyopen 2021; 10:e1143 [View Article] [PubMed]
    [Google Scholar]
  67. Vijaya Kumar S, Abraham PE, Hurst GB, Chourey K, Bible AN et al. A carotenoid-deficient mutant of the plant-associated microbe Pantoea sp. YR343 displays an altered membrane proteome. Sci Rep 2020; 10:14985 [View Article] [PubMed]
    [Google Scholar]
  68. Bible AN, Fletcher SJ, Pelletier DA, Schadt CW, Jawdy SS et al. A carotenoid-deficient mutant in Pantoea sp. YR343, a bacteria isolated from the Rhizosphere of Populus deltoides, is defective in root colonization. Front Microbiol 2016; 7:491 [View Article] [PubMed]
    [Google Scholar]
  69. Jia K-P, Mi J, Ali S, Ohyanagi H, Moreno JC et al. An alternative, zeaxanthin epoxidase-independent abscisic acid biosynthetic pathway in plants. Mol Plant 2022; 15:151–166 [View Article] [PubMed]
    [Google Scholar]
  70. Hirano T, Okubo M, Tsuda H, Yokoyama M, Hakamata W et al. Chitin Heterodisaccharide, released from Chitin by Chitinase and Chitin Oligosaccharide Deacetylase, enhances the Chitin-metabolizing ability of Vibrio parahaemolyticus. J Bacteriol 2019; 201:e00270-19 [View Article] [PubMed]
    [Google Scholar]
  71. Shapiro LR, Scully ED, Straub TJ, Park J, Stephenson AG et al. Horizontal gene acquisitions, mobile element proliferation, and genome decay in the host-restricted plant pathogen Erwinia Tracheiphila. Genome Biol Evol 2016; 8:649–664 [View Article] [PubMed]
    [Google Scholar]
  72. Leo JC, Oberhettinger P, Schütz M, Linke D. The inverse autotransporter family: intimin, invasin and related proteins. Int J Med Microbiol 2015; 305:276–282 [View Article] [PubMed]
    [Google Scholar]
  73. Hasson SO, Judi HK, Salih HH, Al-Khaykan A, Akrami S et al. Intimin (eae) and virulence membrane protein pagC genes are associated with biofilm formation and multidrug resistance in Escherichia coli and Salmonella enterica isolates from calves with diarrhea. BMC Res Notes 2022; 15:321 [View Article] [PubMed]
    [Google Scholar]
  74. Mundy R, Schüller S, Girard F, Fairbrother JM, Phillips AD et al. Functional studies of intimin in vivo and ex vivo: implications for host specificity and tissue tropism. Microbiology 2007; 153:959–967 [View Article] [PubMed]
    [Google Scholar]
  75. Facey PD, Méric G, Hitchings MD, Pachebat JA, Hegarty MJ et al. Draft genomes, phylogenetic reconstruction, and comparative genomics of two novel cohabiting bacterial symbionts isolated from Frankliniella occidentalis. Genome Biol Evol 2015; 7:2188–2202 [View Article] [PubMed]
    [Google Scholar]
  76. Harada H, Oyaizu H, Kosako Y, Ishikawa H. Erwinia aphidicola, a new species isolated from pea aphid, Acyrthosiphon pisum. J Gen Appl Microbiol 1997; 43:349–354 [View Article] [PubMed]
    [Google Scholar]
  77. Campillo T, Luna E, Portier P, Fischer-Le Saux M, Lapitan N et al. Erwinia iniecta sp. nov., isolated from Russian wheat aphid (Diuraphis noxia). Int J Syst Evol Microbiol 2015; 65:3625–3633 [View Article] [PubMed]
    [Google Scholar]
  78. Chanbusarakum L, Ullman D. Characterization of bacterial symbionts in Frankliniella occidentalis (Pergande), Western flower thrips. J Invertebr Pathol 2008; 99:318–325 [View Article] [PubMed]
    [Google Scholar]
  79. Berry C, Meyer JM, Hoy MA, Heppner JB, Tinzaara W et al. Biting Midges, Culicoides Spp. (Diptera: Ceratopogonidae) Dordrecht: Springer Netherlands; 2008 pp 510–519 [PubMed]
    [Google Scholar]
  80. Harada H, Ishikawa H. Experimental pathogenicity of Erwinia aphidicola to pea aphid, Acyrthosiphon pisum. J Gen Appl Microbiol 1997; 43:363–367 [View Article] [PubMed]
    [Google Scholar]
  81. de Vries EJ, Jacobs G, Sabelis MW, Menken SBJ, Breeuwer JAJ. Diet-dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc Biol Sci 2004; 271:2171–2178 [View Article] [PubMed]
    [Google Scholar]
  82. Saldierna Guzmán JP, Reyes-Prieto M, Hart SC. Characterization of Erwinia gerundensis A4, an almond-derived plant growth-promoting endophyte. Front Microbiol 2021; 12:687971 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001242
Loading
/content/journal/mgen/10.1099/mgen.0.001242
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error