1887

Abstract

Lysophosphatidic acid (LPA) occurs naturally in inflammatory exudates and has previously been shown to increase the susceptibility of to β-lactam antibiotics whilst concomitantly reducing accumulation of the virulence factors pyoverdine and elastase. Here it is demonstrated that LPA can also exert inhibitory effects upon pyocyanin production in , as well as influencing susceptibility to a wide range of chemically diverse non β-lactam antimicrobials. Most strikingly, LPA markedly antagonizes the effect of the polycationic antibiotics colistin and tobramycin at a concentration of 250 µg ml whilst conversely enhancing their efficacy at the lower concentration of 8.65 µg ml, approximating the maximal physiological concentrations found in inflammatory exudates. Transcriptomic responses of the virulent strain UCBPP-PA14 to LPA were analysed using RNA-sequencing along with BioLog phenoarrays and whole cell assays in attempts to delineate possible mechanisms underlying these effects. The results strongly suggest involvement of LPA-induced carbon catabolite repression together with outer-membrane (OM) stress responses whilst raising questions about the effect of LPA upon other virulence factors including type III secretion. This could have clinical relevance as it suggests that endogenous LPA may, at concentrations found , differentially modulate antibiotic susceptibility of whilst simultaneously regulating expression of virulence factors, thereby influencing host–pathogen interactions during infection. The possibility of applying exogenous LPA locally as an enhancer of select antibiotics merits further investigation.

Funding
This study was supported by the:
  • Chief Scientist Office (Award TCS/16/24)
    • Principle Award Recipient: NicholasPeter Tucker
  • Biotechnology and Biological Sciences Research Council (Award BB/S507106/1)
    • Principle Award Recipient: NicholasPeter Tucker
  • Biotechnology and Biological Sciences Research Council (Award BB/V509243/1)
    • Principle Award Recipient: NicholasPeter Tucker
  • Biotechnology and Biological Sciences Research Council (Award BB/K019600/1)
    • Principle Award Recipient: NicholasPeter Tucker
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001179
2022-07-07
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/168/7/mic001179.html?itemId=/content/journal/micro/10.1099/mic.0.001179&mimeType=html&fmt=ahah

References

  1. Behzadi P, Baráth Z, Gajdács M. It’s not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:42 [View Article] [PubMed]
    [Google Scholar]
  2. Hauser AR, Jain M, Bar-Meir M, McColley SA. Clinical significance of microbial infection and adaptation in cystic fibrosis. Clin Microbiol Rev 2011; 24:29–70 [View Article] [PubMed]
    [Google Scholar]
  3. Schultz DR, Miller KD. Elastase of Pseudomonas aeruginosa: inactivation of complement components and complement-derived chemotactic and phagocytic factors. Infect Immun 1974; 10:128–135 [View Article] [PubMed]
    [Google Scholar]
  4. Döring G, Obernesser HJ, Botzenhart K, Flehmig B, Høiby N et al. Proteases of Pseudomonas aeruginosa in patients with cystic fibrosis. J Infect Dis 1983; 147:744–750 [View Article] [PubMed]
    [Google Scholar]
  5. Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT et al. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 2009; 175:2473–2488 [View Article] [PubMed]
    [Google Scholar]
  6. Hall S, McDermott C, Anoopkumar-Dukie S, McFarland AJ, Forbes A et al. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins (Basel) 2016; 8:E236 [View Article] [PubMed]
    [Google Scholar]
  7. Nikaido H, Nakae T. The outer membrane of gram-negative bacteria. Adv Microb Physiol 1979; 20:394591 [View Article]
    [Google Scholar]
  8. Angus BL, Carey AM, Caron DA, Kropinski AM, Hancock RE. Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother 1982; 21:299–309 [View Article] [PubMed]
    [Google Scholar]
  9. Yoshimura F, Nikaido H. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol 1982; 152:636–642 [View Article] [PubMed]
    [Google Scholar]
  10. Krogfelt KA, Utley M, Krivan HC, Laux DC, Cohen PS. Specific phospholipids enhance the activity of beta-lactam antibiotics against Pseudomonas aeruginosa. J Antimicrob Chemother 2000; 46:377–384 [View Article] [PubMed]
    [Google Scholar]
  11. Van Rensburg CE, Jooné GK, O’Sullivan JF, Anderson R. Antimicrobial activities of clofazimine and B669 are mediated by lysophospholipids. Antimicrob Agents Chemother 1992; 36:2729–2735 [View Article] [PubMed]
    [Google Scholar]
  12. Skindersoe ME, Krogfelt KA, Blom A, Zhang J, Jiang G et al. Dual action of lysophosphatidate-functionalised titanium: interactions with human (MG63) osteoblasts and methicillin resistant Staphylococcus aureus. PLoS One 2015; 10:e0143509 [View Article] [PubMed]
    [Google Scholar]
  13. Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 1972; 2:23–28 [View Article] [PubMed]
    [Google Scholar]
  14. Laux DC, Corson JM, Givskov M, Hentzer M, Møller A et al. Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA. Microbiology (Reading) 2002; 148:1709–1723 [View Article] [PubMed]
    [Google Scholar]
  15. O’Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 2000; 267:5421–5426 [View Article] [PubMed]
    [Google Scholar]
  16. Jiricny N, Molin S, Foster K, Diggle SP, Scanlan PD et al. Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis. PLoS ONE 2014; 9:e83124 [View Article] [PubMed]
    [Google Scholar]
  17. Essar DW, Eberly L, Hadero A, Crawford IP. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 1990; 172:884–900 [View Article] [PubMed]
    [Google Scholar]
  18. Huang J, Sonnleitner E, Ren B, Xu Y, Haas D. Catabolite repression control of pyocyanin biosynthesis at an intersection of primary and secondary metabolism in Pseudomonas aeruginosa. Appl Environ Microbiol 2012; 78:5016–5020 [View Article] [PubMed]
    [Google Scholar]
  19. Bonner PJ, Shimkets LJ. Phospholipid directed motility of surface-motile bacteria. Mol Microbiol 2006; 61:1101–1109 [View Article] [PubMed]
    [Google Scholar]
  20. Harrison JJ, Turner RJ, Ceri H. High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiol 2005; 5:53 [View Article] [PubMed]
    [Google Scholar]
  21. Chow S, Gu K, Jiang L, Nassour A. Salicylic acid affects swimming, twitching and swarming motility in Pseudomonas aeruginosa, resulting in decreased biofilm formation. JEMI 2011; 15:22–29
    [Google Scholar]
  22. Magoc T, Wood D, Salzberg SL. EDGE-pro: estimated degree of gene expression in prokaryotic genomes. Evol Bioinform Online 2013; 9:127–136 [View Article] [PubMed]
    [Google Scholar]
  23. Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 2016; 44:D646–53 [View Article] [PubMed]
    [Google Scholar]
  24. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27–30 [View Article] [PubMed]
    [Google Scholar]
  25. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–62 [View Article] [PubMed]
    [Google Scholar]
  26. Ediger TL, Toews ML. Dual effects of lysophosphatidic acid on human airway smooth muscle cell proliferation and survival. Biochim Biophys Acta 2001; 1531:59–67 [View Article] [PubMed]
    [Google Scholar]
  27. Daniels JB, Scoffield J, Woolnough JL, Silo-Suh L et al. Impact of glycerol-3-phosphate dehydrogenase on virulence factor production by Pseudomonas aeruginosa. Can J Microbiol 2014; 60:857–863 [View Article]
    [Google Scholar]
  28. Beurer G, Warncke F, Galla H-J. Interaction of polymyxin B1 and polymyxin B1 nonapeptide with phosphatidic acid monolayer and bilayer membranes. Chem Phys Lipids 1988; 47:155–163 [View Article] [PubMed]
    [Google Scholar]
  29. Mulcahy H, Charron-Mazenod L, Lewenza S et al. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 2008; 4:e1000213 [View Article]
    [Google Scholar]
  30. Johnson L, Mulcahy H, Kanevets U, Shi Y, Lewenza S. Surface-localized spermidine protects the Pseudomonas aeruginosa outer membrane from antibiotic treatment and oxidative stress. J Bacteriol 2012; 194:813–826 [View Article]
    [Google Scholar]
  31. Nicas TI, Hancock RE. Outer membrane protein H1 of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylenediaminetetraacetate, polymyxin B, and gentamicin. J Bacteriol 1980; 143:872–878 [View Article]
    [Google Scholar]
  32. Washington JA, Snyder RJ, Kohner PC, Wiltse CG, Ilstrup DM et al. Effect of cation content of agar on the activity of gentamicin, tobramycin, and amikacin against Pseudomonas aeruginosa. J Infect Dis 1978; 137:103–111 [View Article] [PubMed]
    [Google Scholar]
  33. Alexander AM, Gonda I, Harpur ES, Kayes JB. Interaction of aminoglycoside antibiotics with phospholipid liposomes studied by microelectrophoresis. J Antibiot 1979; 32:504–510 [View Article]
    [Google Scholar]
  34. Barlow PG, Beaumont PE, Cosseau C, Mackellar A, Wilkinson TS et al. The human cathelicidin LL-37 preferentially promotes apoptosis of infected airway epithelium. Am J Respir Cell Mol Biol 2010; 43:692–702 [View Article] [PubMed]
    [Google Scholar]
  35. Stewart L, Ford A, Sangal V, Jeukens J, Boyle B et al. Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathog Dis 2014; 71:20–25 [View Article] [PubMed]
    [Google Scholar]
  36. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS et al. Extracellular DNA required for bacterial biofilm formation. Science 2002; 295:1487 [View Article] [PubMed]
    [Google Scholar]
  37. Wozniak DJ, Wyckoff TJO, Starkey M, Keyser R, Azadi P et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 2003; 100:7907–7912 [View Article] [PubMed]
    [Google Scholar]
  38. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 2012; 14:1913–1928 [View Article] [PubMed]
    [Google Scholar]
  39. Mann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 2012; 36:893–916 [View Article] [PubMed]
    [Google Scholar]
  40. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30:295–304 [View Article] [PubMed]
    [Google Scholar]
  41. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 2003; 48:1511–1524 [View Article] [PubMed]
    [Google Scholar]
  42. Miller RM, Tomaras AP, Barker AP, Voelker DR, Chan ED et al. Pseudomonas aeruginosa twitching motility-mediated chemotaxis towards phospholipids and fatty acids: specificity and metabolic requirements. J Bacteriol 2008; 190:4038–4049 [View Article] [PubMed]
    [Google Scholar]
  43. Murray TS, Ledizet M, Kazmierczak BI. Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol 2010; 59:511–520 [View Article] [PubMed]
    [Google Scholar]
  44. Juhas M, Eberl L, Tümmler B. Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ Microbiol 2005; 7:459–471 [View Article] [PubMed]
    [Google Scholar]
  45. Whooley MA, McLoughlin AJ. The regulation of pyocyanin production in Pseudomonas aeruginosa. European J Appl Microbiol Biotechnol 1982; 15:161–166 [View Article]
    [Google Scholar]
  46. Sarkisova S, Patrauchan MA, Berglund D, Nivens DE, Franklin MJ. Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol 2005; 187:4327–4337 [View Article] [PubMed]
    [Google Scholar]
  47. Rojo F. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 2010; 34:658–684 [View Article] [PubMed]
    [Google Scholar]
  48. Chung JCS, Rzhepishevska O, Ramstedt M, Welch M. Type III secretion system expression in oxygen-limited Pseudomonas aeruginosa cultures is stimulated by isocitrate lyase activity. Open Biol 2013; 3:120131 [View Article] [PubMed]
    [Google Scholar]
  49. Palmer GC, Palmer KL, Jorth PA, Whiteley M. Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine. J Bacteriol 2010; 192:2722–2728 [View Article] [PubMed]
    [Google Scholar]
  50. Ohman DE, Cryz SJ, Iglewski BH. Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase. J Bacteriol 1980; 142:836–842 [View Article] [PubMed]
    [Google Scholar]
  51. Subramanian N, Qadri A. Lysophospholipid sensing triggers secretion of flagellin from pathogenic salmonella. Nat Immunol 2006; 7:583–589 [View Article] [PubMed]
    [Google Scholar]
  52. Kwon DH, Lu CD. Polyamine effects on antibiotic susceptibility in bacteria. Antimicrob Agents Chemother 2007; 51:2070–2077 [View Article] [PubMed]
    [Google Scholar]
  53. Mima T, Sekiya H, Mizushima T, Kuroda T, Tsuchiya T. Gene cloning and properties of the RND-type multidrug efflux pumps MexPQ-OpmE and MexMN-OprM from Pseudomonas aeruginosa. Microbiol Immunol 2005; 49:999–1002 [View Article] [PubMed]
    [Google Scholar]
  54. Li Y, Mima T, Komori Y, Morita Y, Kuroda T et al. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother 2003; 52:572–575 [View Article]
    [Google Scholar]
  55. Martinac B, Adler J, Kung C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 1990; 348:261–263 [View Article] [PubMed]
    [Google Scholar]
  56. Ughachukwu P, Unekwe P. Efflux pump-mediated resistance in chemotherapy. Ann Med Health Sci Res 2012; 2:191–198 [View Article] [PubMed]
    [Google Scholar]
  57. Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 2009; 73:622–638 [View Article] [PubMed]
    [Google Scholar]
  58. Lau PCY, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS. Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J Bacteriol 2009; 191:6618–6631 [View Article] [PubMed]
    [Google Scholar]
  59. Hao Y, Murphy K, Lo RY, Khursigara CM, Lam JS et al. Single-nucleotide Polymorphisms found in the migA and wbpX glycosyltransferase genes account for the intrinsic lipopolysaccharide defects exhibited by Pseudomonas aeruginosa PA14. J Bacteriol 2015; 197:2780–2791 [View Article] [PubMed]
    [Google Scholar]
  60. Petrova OE, Cherny KE, Sauer K. ed The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA. J Bacteriol 2015; 197:174–187 [View Article] [PubMed]
    [Google Scholar]
  61. Malhotra S, Silo-Suh LA, Mathee K, Ohman DE. Proteome analysis of the effect of mucoid conversion on global protein expression in Pseudomonas aeruginosa strain PAO1 shows induction of the disulfide bond isomerase, dsbA. J Bacteriol 2000; 182:6999–7006 [View Article] [PubMed]
    [Google Scholar]
  62. Braun P, Ockhuijsen C, Eppens E, Koster M, Bitter W et al. Maturation of Pseudomonas aeruginosa Elastase. J Biol Chem 2001; 276:26030–26035 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001179
Loading
/content/journal/micro/10.1099/mic.0.001179
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error