1887

Abstract

Myxobacteria are social microbial predators that use cell–cell contacts to identify bacterial or fungal prey and to differentiate kin relatives to initiate cellular responses. For prey killing, they assemble Tad-like and type III-like secretion systems at contact sites. For kin discrimination (KD), they assemble outer membrane exchange complexes composed of the TraA and TraB receptors at contacts sites. A type VI secretion system and Rhs proteins also mediate KD. Following cellular recognition, these systems deliver appropriate effectors into target cells. For prey, this leads to cell death and lysis for nutrient consumption by myxobacteria. In KD, a panel of effectors are delivered, and if adjacent cells are clonal cells, resistance ensues because they express a cognate panel of immunity factors; while nonkin lack complete immunity and are intoxicated. This review compares and contrasts recent findings from these systems in myxobacteria.

Funding
This study was supported by the:
  • National Institute of General Medical Sciences (Award GM140886)
    • Principle Award Recipient: DanielWall
  • Deutsche Forschungsgemeinschaft (Award Ka3361/3-1)
    • Principle Award Recipient: ChristineKaimer
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001372
2023-07-26
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/7/mic001372.html?itemId=/content/journal/micro/10.1099/mic.0.001372&mimeType=html&fmt=ahah

References

  1. Aravind L, Iyer LM, Burroughs AM. Discovering biological conflict systems through genome analysis: evolutionary principles and biochemical novelty. Annu Rev Biomed Data Sci 2022; 5:367–391 [View Article] [PubMed]
    [Google Scholar]
  2. Ruhe ZC, Low DA, Hayes CS. Polymorphic toxins and their immunity proteins: diversity, evolution, and mechanisms of delivery. Annu Rev Microbiol 2020; 74:497–520 [View Article] [PubMed]
    [Google Scholar]
  3. Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol 2016; 7:781 [View Article] [PubMed]
    [Google Scholar]
  4. Rosenberg E, Keller KH, Dworkin M. Cell density-dependent growth of Myxococcus xanthus on casein. J Bacteriol 1977; 129:770–777 [View Article] [PubMed]
    [Google Scholar]
  5. Thiery S, Kaimer C. The predation strategy of Myxococcus xanthus. Front Microbiol 2020; 11:2 [View Article]
    [Google Scholar]
  6. Berleman JE, Chumley T, Cheung P, Kirby JR. Rippling is a predatory behavior in Myxococcus xanthus. J Bacteriol 2006; 188:5888–5895 [View Article] [PubMed]
    [Google Scholar]
  7. Jurkevitch E. Predatory Prokaryotes: Biology, Ecology and Evolution Berlin, Heidelberg: Springer; 2006 [View Article]
    [Google Scholar]
  8. Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. Bacterial predation: 75 years and counting!. Environ Microbiol 2016; 18:766–779 [View Article] [PubMed]
    [Google Scholar]
  9. Petters S, Groß V, Söllinger A, Pichler M, Reinhard A et al. The soil microbial food web revisited: predatory myxobacteria as keystone taxa?. ISME J 2021; 15:2665–2675 [View Article] [PubMed]
    [Google Scholar]
  10. Shimkets LJ, Dworkin M, Reichenbach H. eds The Prokaryotes - A Handbook Onthe Biology of Bacteria Springer; 2006 [View Article] [PubMed]
    [Google Scholar]
  11. Curtis PD, Shimkets LJ. Metabolic pathways relevant to predation, signaling, and development. In Whitworth DE. ed Myxobacteria: Multicellularity and Differentiation Washington, DC: American Society for Microbiology; 2007 pp 241–258 [View Article]
    [Google Scholar]
  12. Bretscher AP, Kaiser D. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J Bacteriol 1978; 133:763–768 [View Article] [PubMed]
    [Google Scholar]
  13. Morgan AD, MacLean RC, Hillesland KL, Velicer GJ. Comparative analysis of Myxococcus predation on soil bacteria. Appl Environ Microbiol 2010; 76:6920–6927 [View Article] [PubMed]
    [Google Scholar]
  14. Livingstone PG, Morphew RM, Whitworth DE. Myxobacteria are able to prey broadly upon clinically-relevant pathogens, exhibiting a prey range which cannot be explained by phylogeny. Front Microbiol 2017; 8:1593 [View Article] [PubMed]
    [Google Scholar]
  15. Li Z, Ye X, Liu M, Xia C, Zhang L et al. A novel outer membrane β-1,6-glucanase is deployed in the predation of fungi by myxobacteria. ISME J 2019; 13:2223–2235 [View Article] [PubMed]
    [Google Scholar]
  16. Seef S, Herrou J, de Boissier P, My L, Brasseur G et al. A Tad-like apparatus is required for contact-dependent prey killing in predatory social bacteria. Elife 2021; 10:e72409 [View Article] [PubMed]
    [Google Scholar]
  17. Thiery S, Turowski P, Berleman JE, Kaimer C. The predatory soil bacterium Myxococcus xanthus combines a Tad- and an atypical type 3-like protein secretion system to kill bacterial cells. Cell Rep 2022; 40:111340 [View Article] [PubMed]
    [Google Scholar]
  18. Zhang W, Wang Y, Lu H, Liu Q, Wang C et al. Dynamics of solitary predation by Myxococcus xanthus on Escherichia coli observed at the single-cell level. Appl Environ Microbiol 2020; 86:e02286-19 [View Article] [PubMed]
    [Google Scholar]
  19. McBride MJ, Zusman DR. Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. FEMS Microbiol Lett 1996; 137:227–231 [View Article] [PubMed]
    [Google Scholar]
  20. Tomich M, Planet PJ, Figurski DH. The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 2007; 5:363–375 [View Article] [PubMed]
    [Google Scholar]
  21. Ellison CK, Whitfield GB, Brun YV. Type IV pili: dynamic bacterial nanomachines. FEMS Microbiol Rev 2022; 46:fuab053 [View Article] [PubMed]
    [Google Scholar]
  22. Chanyi RM, Koval SF. Role of type IV pili in predation by Bdellovibrio bacteriovorus. PLoS One 2014; 9:e113404 [View Article] [PubMed]
    [Google Scholar]
  23. Avidan O, Petrenko M, Becker R, Beck S, Linscheid M et al. Identification and characterization of differentially-regulated type IVb pilin genes necessary for predation in obligate bacterial predators. Sci Rep 2017; 7:1013 [View Article] [PubMed]
    [Google Scholar]
  24. Capeness MJ, Lambert C, Lovering AL, Till R, Uchida K et al. Activity of Bdellovibrio hit locus proteins, Bd0108 and Bd0109, links type IVa pilus extrusion/retraction status to prey-independent growth signalling. PLoS One 2013; 8:e79759 [View Article] [PubMed]
    [Google Scholar]
  25. Konovalova A, Petters T, Søgaard-Andersen L. Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 2010; 34:89–106 [View Article] [PubMed]
    [Google Scholar]
  26. Abby SS, Rocha EPC. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems. PLoS Genet 2012; 8:e1002983 [View Article] [PubMed]
    [Google Scholar]
  27. Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2021; 115:395–411 [View Article] [PubMed]
    [Google Scholar]
  28. Arend KI, Schmidt JJ, Bentler T, Lüchtefeld C, Eggerichs D et al. Myxococcus xanthus predation of Gram-positive or Gram-negative bacteria is mediated by different bacteriolytic mechanisms. Appl Environ Microbiol 2021; 87:e02382-20 [View Article] [PubMed]
    [Google Scholar]
  29. Berleman JE, Allen S, Danielewicz MA, Remis JP, Gorur A et al. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front Microbiol 2014; 5:474 [View Article] [PubMed]
    [Google Scholar]
  30. Evans AGL, Davey HM, Cookson A, Currinn H, Cooke-Fox G et al. Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 2012; 158:2742–2752 [View Article] [PubMed]
    [Google Scholar]
  31. Remis JP, Wei D, Gorur A, Zemla M, Haraga J et al. Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environ Microbiol 2014; 16:598–610 [View Article] [PubMed]
    [Google Scholar]
  32. Whitworth DE. Myxobacterial vesicles death at a distance?. Adv Appl Microbiol 2011; 75:1–31 [View Article] [PubMed]
    [Google Scholar]
  33. Sudo S, Dworkin M. Bacteriolytic enzymes produced by Myxococcus xanthus. J Bacteriol 1972; 110:236–245 [View Article] [PubMed]
    [Google Scholar]
  34. Zhang L, Dong C, Wang J, Liu M, Wang J et al. Predation of oomycetes by myxobacteria via a specialized CAZyme system arising from adaptive evolution. ISME J 2023; 17:1089–1103 [View Article] [PubMed]
    [Google Scholar]
  35. Korp J, Vela Gurovic MS, Nett M. Antibiotics from predatory bacteria. Beilstein J Org Chem 2016; 12:594–607 [View Article] [PubMed]
    [Google Scholar]
  36. Weissman KJ, Müller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep 2010; 27:1276–1295 [View Article] [PubMed]
    [Google Scholar]
  37. Yu U, Kim J, Park S, Cho K. Tubulysins are essential for the preying of ciliates by myxobacteria. J Microbiol 2023; 61:627–632 [View Article] [PubMed]
    [Google Scholar]
  38. Xiao Y, Wei X, Ebright R, Wall D. Antibiotic production by myxobacteria plays a role in predation. J Bacteriol 2011; 193:4626–4633 [View Article]
    [Google Scholar]
  39. Xiao Y, Gerth K, Müller R, Wall D. Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother 2012; 56:2014–2021 [View Article] [PubMed]
    [Google Scholar]
  40. Wang C, Liu X, Zhang P, Wang Y, Li Z et al. Bacillus licheniformis escapes from Myxococcus xanthus predation by deactivating myxovirescin A through enzymatic glucosylation. Environ Microbiol 2019; 21:4755–4772 [View Article] [PubMed]
    [Google Scholar]
  41. Müller S, Strack SN, Ryan SE, Shawgo M, Walling A et al. Identification of functions affecting predator-prey interactions between Myxococcus xanthus and Bacillus subtilis. J Bacteriol 2016; 198:3335–3344 [View Article] [PubMed]
    [Google Scholar]
  42. Cortina NS, Krug D, Plaza A, Revermann O, Müller R. Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem Int Ed Engl 2012; 51:811–816 [View Article] [PubMed]
    [Google Scholar]
  43. Berleman JE, Kirby JR. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 2009; 33:942–957 [View Article] [PubMed]
    [Google Scholar]
  44. Zhang H, Vaksman Z, Litwin DB, Shi P, Kaplan HB et al. The mechanistic basis of Myxococcus xanthus rippling behavior and its physiological role during predation. PLoS Comput Biol 2012; 8:e1002715 [View Article] [PubMed]
    [Google Scholar]
  45. Marshall RC, Whitworth DE. Is “wolf-pack” predation by antimicrobial bacteria cooperative? Cell behaviour and predatory mechanisms indicate profound selfishness, even when working alongside kin. Bioessays 2019; 41:e1800247 [View Article] [PubMed]
    [Google Scholar]
  46. Berleman JE, Scott J, Chumley T, Kirby JR. Predataxis behavior in Myxococcus xanthus. Proc Natl Acad Sci 2008; 105:17127–17132 [View Article] [PubMed]
    [Google Scholar]
  47. Shimkets LJ, Kaiser D. Induction of coordinated movement of Myxococcus xanthus cells. J Bacteriol 1982; 152:451–461 [View Article]
    [Google Scholar]
  48. Livingstone PG, Millard AD, Swain MT, Whitworth DE. Transcriptional changes when Myxococcus xanthus preys on Escherichia coli suggest myxobacterial predators are constitutively toxic but regulate their feeding. Microb Genom 2018; 4:e000152 [View Article] [PubMed]
    [Google Scholar]
  49. Pérez J, Contreras-Moreno FJ, Muñoz-Dorado J, Moraleda-Muñoz A. Development versus predation: transcriptomic changes during the lifecycle of Myxococcus xanthus. Front Microbiol 2022; 13:1004476 [View Article] [PubMed]
    [Google Scholar]
  50. Wang C, Xiao Y, Wang Y, Liu Y, Yao Q et al. Comparative genomics and transcriptomics insight into myxobacterial metabolism potentials and multiple predatory strategies. Front Microbiol 2023; 14:1146523 [View Article]
    [Google Scholar]
  51. Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN et al. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME J 2013; 7:756–769 [View Article]
    [Google Scholar]
  52. Akbar S, Phillips KE, Misra SK, Sharp JS, Stevens DC. Differential response to prey quorum signals indicates predatory specialization of myxobacteria and ability to predate Pseudomonas aeruginosa. Environ Microbiol 2022; 24:1263–1278 [View Article] [PubMed]
    [Google Scholar]
  53. Lloyd DG, Whitworth DE. The myxobacterium Myxococcus xanthus can sense and respond to the quorum signals secreted by potential prey organisms. Front Microbiol 2017; 8:439 [View Article] [PubMed]
    [Google Scholar]
  54. Lee N, Kim W, Chung J, Lee Y, Cho S et al. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. ISME J 2020; 14:1111–1124 [View Article] [PubMed]
    [Google Scholar]
  55. Pérez J, Jiménez-Zurdo JI, Martínez-Abarca F, Millán V, Shimkets LJ et al. Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation. Environ Microbiol 2014; 16:2341–2350 [View Article] [PubMed]
    [Google Scholar]
  56. Müller S, Strack SN, Hoefler BC, Straight PD, Kearns DB et al. Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl Environ Microbiol 2014; 80:5603–5610 [View Article]
    [Google Scholar]
  57. Nair RR, Vasse M, Wielgoss S, Sun L, Yu Y-TN et al. Bacterial predator-prey coevolution accelerates genome evolution and selects on virulence-associated prey defences. Nat Commun 2019; 10:4301 [View Article]
    [Google Scholar]
  58. Wall D. Kin recognition in bacteria. Annu Rev Microbiol 2016; 70:143–160 [View Article] [PubMed]
    [Google Scholar]
  59. Bickel S, Or D. Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nat Commun 2020; 11:116 [View Article] [PubMed]
    [Google Scholar]
  60. Wielgoss S, Didelot X, Chaudhuri RR, Liu X, Weedall GD et al. A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus. ISME J 2016; 10:2468–2477 [View Article] [PubMed]
    [Google Scholar]
  61. Vos M, Velicer GJ. Social conflict in centimeter-and global-scale populations of the bacterium Myxococcus xanthus. Curr Biol 2009; 19:1763–1767 [View Article] [PubMed]
    [Google Scholar]
  62. Lee B, Holkenbrink C, Treuner-Lange A, Higgs PI. Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. J Bacteriol 2012; 194:3058–3068 [View Article] [PubMed]
    [Google Scholar]
  63. Wielgoss S, Wolfensberger R, Sun L, Fiegna F, Velicer GJ. Social genes are selection hotspots in kin groups of a soil microbe. Science 2019; 363:1342–1345 [View Article] [PubMed]
    [Google Scholar]
  64. Weltzer ML, Wall D. Social diversification driven by mobile genetic elements. Genes 2023; 14:648 [View Article] [PubMed]
    [Google Scholar]
  65. Vassallo CN, Wall D. Self-identity barcodes encoded by six expansive polymorphic toxin families discriminate kin in myxobacteria. Proc Natl Acad Sci 2019; 116:24808–24818 [View Article] [PubMed]
    [Google Scholar]
  66. Vassallo CN, Troselj V, Weltzer ML, Wall D. Rapid diversification of wild social groups driven by toxin-immunity loci on mobile genetic elements. ISME J 2020; 14:2474–2487 [View Article] [PubMed]
    [Google Scholar]
  67. Rendueles O, Zee PC, Dinkelacker I, Amherd M, Wielgoss S et al. Rapid and widespread de novo evolution of kin discrimination. Proc Natl Acad Sci 2015; 112:9076–9081 [View Article] [PubMed]
    [Google Scholar]
  68. Sah GP, Wall D. Kin recognition and outer membrane exchange (OME) in myxobacteria. Curr Opin Microbiol 2020; 56:81–88 [View Article] [PubMed]
    [Google Scholar]
  69. Pathak DT, Wei X, Bucuvalas A, Haft DH, Gerloff DL et al. Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism. PLoS Genet 2012; 8:e1002626 [View Article] [PubMed]
    [Google Scholar]
  70. Cao P, Wei X, Awal RP, Müller R, Wall D. A highly polymorphic receptor governs many distinct self-recognition types within the Myxococcales order. mBio 2019; 10:e02751-18 [View Article] [PubMed]
    [Google Scholar]
  71. Cao P, Wall D. Self-identity reprogrammed by a single residue switch in a cell surface receptor of a social bacterium. Proc Natl Acad Sci 2017; 114:3732–3737 [View Article] [PubMed]
    [Google Scholar]
  72. Balagam R, Cao P, Sah GP, Zhang Z, Subedi K et al. Emergent myxobacterial behaviors arise from reversal suppression induced by kin contacts. mSystems 2021; 6:e0072021 [View Article] [PubMed]
    [Google Scholar]
  73. Cao PB, Wall D. Direct visualization of a molecular handshake that governs kin recognition and tissue formation in myxobacteria. Nat Commun 2019; 10:3073 [View Article]
    [Google Scholar]
  74. Wei X, Pathak DT, Wall D. Heterologous protein transfer within structured myxobacteria biofilms. Mol Microbiol 2011; 81:315–326 [View Article] [PubMed]
    [Google Scholar]
  75. Vassallo C, Pathak DT, Cao P, Zuckerman DM, Hoiczyk E et al. Cell rejuvenation and social behaviors promoted by LPS exchange in myxobacteria. Proc Natl Acad Sci 2015; 112:E2939–E2946 [View Article] [PubMed]
    [Google Scholar]
  76. Vassallo CN, Wall D. Tissue repair in myxobacteria: a cooperative strategy to heal cellular damage. BioEssays 2016; 38:306–315 [View Article]
    [Google Scholar]
  77. Vassallo CN, Cao P, Conklin A, Finkelstein H, Hayes CS et al. Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. Elife 2017; 6:e29397 [View Article] [PubMed]
    [Google Scholar]
  78. Dey A, Wall D. A genetic screen in Myxococcus xanthus identifies mutants that uncouple outer membrane exchange from a downstream cellular response. J Bacteriol 2014; 196:4324–4332 [View Article] [PubMed]
    [Google Scholar]
  79. Dey A, Vassallo CN, Conklin AC, Pathak DT, Troselj V et al. Sibling rivalry in Myxococcus xanthus is mediated by kin recognition and a polyploid prophage. J Bacteriol 2016; 198:994–1004 [View Article]
    [Google Scholar]
  80. Vassallo CN, Sah GP, Weltzer ML, Wall D. Modular lipoprotein toxins transferred by outer membrane exchange target discrete cell entry pathways. mBio 2021; 12:e0238821 [View Article] [PubMed]
    [Google Scholar]
  81. Strassmann JE, Gilbert OM, Queller DC. Kin discrimination and cooperation in microbes. Annu Rev Microbiol 2011; 65:349–367 [View Article]
    [Google Scholar]
  82. Leiman PG, Basler M, Ramagopal UA, Bonanno JB, Sauder JM et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci 2009; 106:4154–4159 [View Article] [PubMed]
    [Google Scholar]
  83. Jurėnas D, Journet L. Activity, delivery, and diversity of type VI secretion effectors. Mol Microbiol 2021; 115:383–394 [View Article] [PubMed]
    [Google Scholar]
  84. Chang Y-W, Rettberg LA, Ortega DR, Jensen GJ. In vivo structures of an intact type VI secretion system revealed by electron cryotomography. EMBO Rep 2017; 18:1090–1099 [View Article] [PubMed]
    [Google Scholar]
  85. Troselj V, Treuner-Lange A, Søgaard-Andersen L, Wall D. Physiological heterogeneity triggers sibling conflict mediated by the type VI secretion system in an aggregative multicellular bacterium. mBio 2018; 9:e01645-17 [View Article] [PubMed]
    [Google Scholar]
  86. Gong Y, Zhang Z, Zhou X-W, Anwar MN, Hu X-Z et al. Competitive interactions between incompatible mutants of the social bacterium Myxococcus xanthus DK1622. Front Microbiol 2018; 9:1200 [View Article] [PubMed]
    [Google Scholar]
  87. Liu Y, Wang J, Zhang Z, Wang F, Gong Y et al. Two PAAR proteins with different C-terminal extended domains have distinct ecological functions in Myxococcus xanthus. Appl Environ Microbiol 2021; 87:e00080-21 [View Article]
    [Google Scholar]
  88. Gong Y, Zhang Z, Liu Y, Zhou X-W, Anwar MN et al. A nuclease-toxin and immunity system for kin discrimination in Myxococcus xanthus. Environ Microbiol 2018; 20:2552–2567 [View Article] [PubMed]
    [Google Scholar]
  89. Speare L, Cecere AG, Guckes KR, Smith S, Wollenberg MS et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc Natl Acad Sci 2018; 115:E8528–E8537 [View Article] [PubMed]
    [Google Scholar]
  90. Speare L, Woo M, Dunn AK, Septer AN. A putative lipoprotein mediates cell-cell contact for type VI secretion system-dependent killing of specific competitors. mBio 2022; 13:e0308521 [View Article] [PubMed]
    [Google Scholar]
  91. Saak CC, Gibbs KA. The self-identity protein IdsD is communicated between cells in swarming Proteus mirabilis colonies. J Bacteriol 2016; 198:3278–3286 [View Article] [PubMed]
    [Google Scholar]
  92. Tipping MJ, Gibbs KA. Peer pressure from a Proteus mirabilis self-recognition system controls participation in cooperative swarm motility. PLoS Pathog 2019; 15:e1007885 [View Article] [PubMed]
    [Google Scholar]
  93. Jamet A, Nassif X. New players in the toxin field: polymorphic toxin systems in bacteria. mBio 2015; 6:e00285-15 [View Article] [PubMed]
    [Google Scholar]
  94. Koskiniemi S, Lamoureux JG, Nikolakakis KC, t’Kint de Roodenbeke C, Kaplan MD et al. Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci 2013; 110:7032–7037 [View Article] [PubMed]
    [Google Scholar]
  95. Alcoforado Diniz J, Coulthurst SJ. Intraspecies competition in Serratia marcescens is mediated by type VI-secreted Rhs effectors and a conserved effector-associated accessory protein. J Bacteriol 2015; 197:2350–2360 [View Article] [PubMed]
    [Google Scholar]
  96. Kung VL, Khare S, Stehlik C, Bacon EM, Hughes AJ et al. An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proc Natl Acad Sci 2012; 109:1275–1280 [View Article] [PubMed]
    [Google Scholar]
  97. Youderian P, Hartzell PL. Triple mutants uncover three new genes required for social motility in Myxococcus xanthus. Genetics 2007; 177:557–566 [View Article] [PubMed]
    [Google Scholar]
  98. López D, Vlamakis H, Losick R, Kolter R. Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 2009; 74:609–618 [View Article] [PubMed]
    [Google Scholar]
  99. González-Pastor JE. Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol Rev 2011; 35:415–424 [View Article] [PubMed]
    [Google Scholar]
  100. Gophna U. Et tu, Vibrio cholerae? Kin-cannibalism and a bacterial secretion system. Cell 2022; 185:4039–4040 [View Article] [PubMed]
    [Google Scholar]
  101. Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S et al. ColabFold: making protein folding accessible to all. Nat Methods 2022; 19:679–682 [View Article] [PubMed]
    [Google Scholar]
  102. Sah GP, Cao P, Wall D. MYXO-CTERM sorting tag directs proteins to the cell surface via the type II secretion system. Mol Microbiol 2020; 113:1038–1051 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001372
Loading
/content/journal/micro/10.1099/mic.0.001372
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error