1887

Abstract

Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulence-associated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97 % (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98 % (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000143
2017-12-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/3/12/mgen000143.html?itemId=/content/journal/mgen/10.1099/mgen.0.000143&mimeType=html&fmt=ahah

References

  1. Poolman JT, Wacker M. Extraintestinal pathogenic Escherichia coli, a common human pathogen: challenges for vaccine development and progress in the field. J Infect Dis 2016; 213:6–13 [View Article][PubMed]
    [Google Scholar]
  2. O'Neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations London: Wellcome Trust, UK Government; 2016
    [Google Scholar]
  3. Herrero-Fresno A, Larsen I, Olsen JE. Genetic relatedness of commensal Escherichia coli from nursery pigs in intensive pig production in Denmark and molecular characterization of genetically different strains. J Appl Microbiol 2015; 119:342–353 [View Article][PubMed]
    [Google Scholar]
  4. Han S. Environmental Impacts of China's Pork Industry Washington, DC:: Wilson Center; 2014
    [Google Scholar]
  5. Wang F-H, Ma W-Q, Dou Z-X, Ma L, Liu X-L et al. The estimation of the production amount of animal manure and its environmental effect in China. China Environmental Science 2006; 26:614–617
    [Google Scholar]
  6. Johnson JR, Russo TA. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli . Int J Med Microbiol 2005; 295:383–404 [View Article][PubMed]
    [Google Scholar]
  7. Johnson JR, Kuskowski MA, Smith K, O'Bryan TT, Tatini S. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J Infect Dis 2005; 191:1040–1049 [View Article][PubMed]
    [Google Scholar]
  8. Varela AR, Manageiro V, Ferreira E, Guimarães MA, da Costa PM et al. Molecular evidence of the close relatedness of clinical, gull and wastewater isolates of quinolone-resistant Escherichia coli . J Glob Antimicrob Resist 2015; 3:286–289 [View Article][PubMed]
    [Google Scholar]
  9. Manges AR. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect 2016; 22:122–129 [View Article][PubMed]
    [Google Scholar]
  10. Nordstrom L, Liu CM, Price LB. Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Front Microbiol 2013; 4:29 [View Article][PubMed]
    [Google Scholar]
  11. Vincent C, Boerlin P, Daignault D, Dozois CM, Dutil L et al. Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 2010; 16:88–95 [View Article][PubMed]
    [Google Scholar]
  12. Cordoni G, Woodward MJ, Wu H, Alanazi M, Wallis T et al. Comparative genomics of European avian pathogenic E. coli (APEC). BMC Genomics 2016; 17:960 [View Article][PubMed]
    [Google Scholar]
  13. Levings RS, Djordjevic SP, Hall RM. SGI2, a relative of Salmonella genomic island SGI1 with an independent origin. Antimicrob Agents Chemother 2008; 52:2529–2537 [View Article][PubMed]
    [Google Scholar]
  14. Moran RA, Holt KE, Hall RM. pCERC3 from a commensal ST95 Escherichia coli: a ColV virulence-multiresistance plasmid carrying a sul3-associated class 1 integron. Plasmid 2016; 84-85:11–19 [View Article][PubMed]
    [Google Scholar]
  15. Chowdhury PR, Charles IG, Djordjevic SP. A role for Tn6029 in the evolution of the complex antibiotic resistance gene loci in genomic island 3 in enteroaggregative hemorrhagic Escherichia coli O104:H4. PLoS One 2015; 10:e0115781 [View Article][PubMed]
    [Google Scholar]
  16. Venturini C, Beatson SA, Djordjevic SP, Walker MJ. Multiple antibiotic resistance gene recruitment onto the enterohemorrhagic Escherichia coli virulence plasmid. FASEB J 2010; 24:1160–1166 [View Article][PubMed]
    [Google Scholar]
  17. Venturini C, Hassan KA, Chowdhury PR, Paulsen IT, Walker MJ et al. Sequences of two related multiple antibiotic resistance virulence plasmids sharing a unique IS26-related molecular signature isolated from different Escherichia coli pathotypes from different hosts. PLoS One 2013; 8:e78862 [View Article][PubMed]
    [Google Scholar]
  18. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol 2006; 14:176–182 [View Article][PubMed]
    [Google Scholar]
  19. Li LG, Xia Y, Zhang T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. Isme J 2017; 11:651–662 [View Article][PubMed]
    [Google Scholar]
  20. Ben W, Wang J, Pan X, Qiang Z. Dissemination of antibiotic resistance genes and their potential removal by on-farm treatment processes in nine swine feedlots in Shandong Province, China. Chemosphere 2017; 167:262–268 [View Article][PubMed]
    [Google Scholar]
  21. Zhou X, Qiao M, Wang FH, Zhu YG. Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil. Environ Sci Pollut Res Int 2017; 24:701–710 [View Article][PubMed]
    [Google Scholar]
  22. Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. Isme J 2015; 9:1269–1279 [View Article][PubMed]
    [Google Scholar]
  23. Liebert CA, Hall RM, Summers AO. Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev 1999; 63:507–522[PubMed]
    [Google Scholar]
  24. Cheng C, Sun J, Zheng F, Lu W, Yang Q et al. New structures simultaneously harboring class 1 integron and ISCR1-linked resistance genes in multidrug-resistant Gram-negative bacteria. BMC Microbiol 2016; 16:71 [View Article][PubMed]
    [Google Scholar]
  25. Harmer CJ, Hall RM. IS26-Mediated formation of transposons carrying antibiotic resistance genes. mSphere 2016; 1:e00038-16 [View Article][PubMed]
    [Google Scholar]
  26. Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. MBio 2014; 5:e01801-14 [View Article][PubMed]
    [Google Scholar]
  27. Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century?. Microbiol Mol Biol Rev 2006; 70:296–316 [View Article][PubMed]
    [Google Scholar]
  28. Cantón R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 2006; 9:466–475 [View Article][PubMed]
    [Google Scholar]
  29. Dionisi AM, Lucarelli C, Owczarek S, Luzzi I, Villa L. Characterization of the plasmid-borne quinolone resistance gene qnrB19 in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 2009; 53:4019–4021 [View Article][PubMed]
    [Google Scholar]
  30. Toleman MA, Walsh TR. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria. FEMS Microbiol Rev 2011; 35:912–935 [View Article][PubMed]
    [Google Scholar]
  31. Doublet B, Praud K, Weill FX, Cloeckaert A. Association of IS26-composite transposons and complex In4-type integrons generates novel multidrug resistance loci in Salmonella genomic island 1. J Antimicrob Chemother 2009; 63:282–289 [View Article][PubMed]
    [Google Scholar]
  32. Siebor E, Neuwirth C. Emergence of Salmonella genomic island 1 (SGI1) among Proteus mirabilis clinical isolates in Dijon, France. J Antimicrob Chemother 2013; 68:1750–1756 [View Article][PubMed]
    [Google Scholar]
  33. Mangat CS, Bekal S, Irwin RJ, Mulvey MR. A novel hybrid plasmid carrying multiple antimicrobial resistance and virulence genes in Salmonella enterica serovar Dublin. Antimicrob Agents Chemother 2017; 61:e02601-16 [View Article][PubMed]
    [Google Scholar]
  34. Porse A, Schønning K, Munck C, Sommer MO. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. Mol Biol Evol 2016; 33:2860–2873 [View Article][PubMed]
    [Google Scholar]
  35. Ahmed S, Olsen JE, Herrero-Fresno A. The genetic diversity of commensal Escherichia coli strains isolated from non-antimicrobial treated pigs varies according to age group. PLoS One 2017; 12:e0178623 [View Article][PubMed]
    [Google Scholar]
  36. Darling AE, Worden P, Chapman TA, Chowdhury PR, Charles IG et al. The genome of Clostridium difficile 5.3. Gut Pathog 2014; 6:4 [View Article][PubMed]
    [Google Scholar]
  37. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015; 31:587–589 [View Article][PubMed]
    [Google Scholar]
  38. Bell SM, Newton P, Nguyen TT. Antibiotic Susceptibility Testing by the CDS Method: a Manual for Medical and Veterinary Laboratories Randwick, NSW, Australia: South Eastern Area Laboratory Services; 2013 pp. 6
    [Google Scholar]
  39. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article][PubMed]
    [Google Scholar]
  40. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012; 67:2640–2644 [View Article][PubMed]
    [Google Scholar]
  41. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 2006; 34:D32–D36 [View Article][PubMed]
    [Google Scholar]
  42. Joensen KG, Tetzschner AM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J Clin Microbiol 2015; 53::2410–2426 [View Article][PubMed]
    [Google Scholar]
  43. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli . J Clin Microbiol 2014; 52:1501–1510 [View Article][PubMed]
    [Google Scholar]
  44. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article][PubMed]
    [Google Scholar]
  45. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article][PubMed]
    [Google Scholar]
  46. Milne I, Bayer M, Cardle L, Shaw P, Stephen G et al. Tablet-next generation sequence assembly visualization. Bioinformatics 2010; 26:401–402 [View Article][PubMed]
    [Google Scholar]
  47. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 2000; 66:4555–4558 [View Article][PubMed]
    [Google Scholar]
  48. Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM et al. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2014; 2:e243 [View Article][PubMed]
    [Google Scholar]
  49. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  50. Wyrsch E, Chowdhury PR, Abraham S, Santos J, Darling AE et al. Comparative genomic analysis of a multiple antimicrobial resistant enterotoxigenic E. coli O157 lineage from Australian pigs. BMC Genomics 2015; 16:165 [View Article][PubMed]
    [Google Scholar]
  51. Moran RA, Hall RM. Evolution of regions containing antibiotic resistance genes in FII-2-FIB-1 ColV-Colla virulence plasmids. Microb Drug Resist 2017 [Epub ahead of print][PubMed]
    [Google Scholar]
  52. Bednorz C, Oelgeschläger K, Kinnemann B, Hartmann S, Neumann K et al. The broader context of antibiotic resistance: zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo . Int J Med Microbiol 2013; 303:396–403 [View Article][PubMed]
    [Google Scholar]
  53. Cortés P, Blanc V, Mora A, Dahbi G, Blanco JE et al. Isolation and characterization of potentially pathogenic antimicrobial-resistant Escherichia coli strains from chicken and pig farms in Spain. Appl Environ Microbiol 2010; 76:2799–2805 [View Article][PubMed]
    [Google Scholar]
  54. Wang J, Gibbons JF, McGrath K, Bai L, Li F et al. Molecular characterization of blaESBL-producing Escherichia coli cultured from pig farms in Ireland. J Antimicrob Chemother 2016; 71:3062–3065 [View Article][PubMed]
    [Google Scholar]
  55. Alcalá L, Alonso CA, Simón C, González-Esteban C, Orós J et al. Wild birds, frequent carriers of extended-spectrum β-Lactamase (ESBL) producing Escherichia coli of CTX-M and SHV-12 types. Microb Ecol 2016; 72:861–869 [View Article][PubMed]
    [Google Scholar]
  56. Ho PL, Lo WU, Lai EL, Law PY, Leung SM et al. Clonal diversity of CTX-M-producing, multidrug-resistant Escherichia coli from rodents. J Med Microbiol 2015; 64:185–190 [View Article][PubMed]
    [Google Scholar]
  57. Liu X, Liu H, Li Y, Hao C. High prevalence of β-lactamase and plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in Shaanxi, China. Front Microbiol 2016; 7:1843 [View Article][PubMed]
    [Google Scholar]
  58. Manges AR, Harel J, Masson L, Edens TJ, Portt A et al. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog Dis 2015; 12:302–310 [View Article][PubMed]
    [Google Scholar]
  59. Rodrigues C, Machado E, Peixe L, Novais A. IncI1/ST3 and IncN/ST1 plasmids drive the spread of blaTEM-52 and blaCTX-M-1/-32 in diverse Escherichia coli clones from different piggeries. J Antimicrob Chemother 2013; 68:2245–2248 [View Article][PubMed]
    [Google Scholar]
  60. Shabana II, Zaraket H, Suzuki H. Molecular studies on diarrhea-associated Escherichia coli isolated from humans and animals in Egypt. Vet Microbiol 2013; 167:532–539 [View Article][PubMed]
    [Google Scholar]
  61. Trobos M, Christensen H, Sunde M, Nordentoft S, Agersø Y et al. Characterization of sulphonamide-resistant Escherichia coli using comparison of sul2 gene sequences and multilocus sequence typing. Microbiology 2009; 155:831–836 [View Article][PubMed]
    [Google Scholar]
  62. Guiral E, Mendez-Arancibia E, Soto SM, Salvador P, Fabrega A et al. CTX-M-15-producing enteroaggregative Escherichia coli as cause of travelers' diarrhea. Emerg Infect Dis 2011; 17:1950–1953 [View Article][PubMed]
    [Google Scholar]
  63. Reuland EA, Overdevest IT, Al Naiemi N, Kalpoe JS, Rijnsburger MC et al. High prevalence of ESBL-producing Enterobacteriaceae carriage in Dutch community patients with gastrointestinal complaints. Clin Microbiol Infect 2013; 19:542–549 [View Article][PubMed]
    [Google Scholar]
  64. Ding Y, Tang X, Lu P, Wu B, Xu Z et al. Clonal analysis and virulent traits of pathogenic extraintestinal Escherichia coli isolates from swine in China. BMC Vet Res 2012; 8:140 [View Article][PubMed]
    [Google Scholar]
  65. Tan C, Tang X, Zhang X, Ding Y, Zhao Z et al. Serotypes and virulence genes of extraintestinal pathogenic Escherichia coli isolates from diseased pigs in China. Vet J 2012; 192:483–488 [View Article][PubMed]
    [Google Scholar]
  66. Giufrè M, Graziani C, Accogli M, Luzzi I, Busani L et al. Escherichia coli of human and avian origin: detection of clonal groups associated with fluoroquinolone and multidrug resistance in Italy. J Antimicrob Chemother 2012; 67:860–867 [View Article][PubMed]
    [Google Scholar]
  67. Salvador E, Wagenlehner F, Köhler CD, Mellmann A, Hacker J et al. Comparison of asymptomatic bacteriuria Escherichia coli isolates from healthy individuals versus those from hospital patients shows that long-term bladder colonization selects for attenuated virulence phenotypes. Infect Immun 2012; 80:668–678 [View Article][PubMed]
    [Google Scholar]
  68. Usein CR, Papagheorghe R, Oprea M, Condei M, Strãuţ M. Molecular characterization of bacteremic Escherichia coli isolates in Romania. Folia Microbiol 2016; 61:221–226 [View Article][PubMed]
    [Google Scholar]
  69. Pires J, Kuenzli E, Kasraian S, Tinguely R, Furrer H et al. Polyclonal intestinal colonization with extended-spectrum cephalosporin-resistant enterobacteriaceae upon traveling to India. Front Microbiol 2016; 7:1069 [View Article][PubMed]
    [Google Scholar]
  70. Tagg KA, Ginn AN, Partridge SR, Iredell JR. MALDI-TOF mass spectrometry for multilocus sequence typing of Escherichia coli reveals diversity among isolates carrying bla CMY-2-like genes. PLoS One 2015; 10:e0143446 [View Article][PubMed]
    [Google Scholar]
  71. Alghoribi MF, Gibreel TM, Farnham G, Al Johani SM, Balkhy HH et al. Antibiotic-resistant ST38, ST131 and ST405 strains are the leading uropathogenic Escherichia coli clones in Riyadh, Saudi Arabia. J Antimicrob Chemother 2015; 70:2757–2762 [View Article][PubMed]
    [Google Scholar]
  72. Toval F, Köhler CD, Vogel U, Wagenlehner F, Mellmann A et al. Characterization of Escherichia coli isolates from hospital inpatients or outpatients with urinary tract infection. J Clin Microbiol 2014; 52:407–418 [View Article][PubMed]
    [Google Scholar]
  73. Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 2011; 17:873–880 [View Article][PubMed]
    [Google Scholar]
  74. Moran RA, Anantham S, Pinyon JL, Hall RM. Plasmids in antibiotic susceptible and antibiotic resistant commensal Escherichia coli from healthy Australian adults. Plasmid 2015; 80:24–31 [View Article][PubMed]
    [Google Scholar]
  75. Antunes P, Machado J, Peixe L. Dissemination of sul3-containing elements linked to class 1 integrons with an unusual 3' conserved sequence region among Salmonella isolates. Antimicrob Agents Chemother 2007; 51:1545–1548 [View Article][PubMed]
    [Google Scholar]
  76. Curiao T, Cantón R, Garcillán-Barcia MP, de La Cruz F, Baquero F et al. Association of composite IS26-sul3 elements with highly transmissible IncI1 plasmids in extended-spectrum-beta-lactamase-producing Escherichia coli clones from humans. Antimicrob Agents Chemother 2011; 55:2451–2457 [View Article][PubMed]
    [Google Scholar]
  77. Liu J, Keelan P, Bennett PM, Enne VI. Characterization of a novel macrolide efflux gene, mef(B), found linked to sul3 in porcine Escherichia coli . J Antimicrob Chemother 2009; 63:423–426 [View Article][PubMed]
    [Google Scholar]
  78. Gündoğdu A, Long YB, Vollmerhausen TL, Katouli M. Antimicrobial resistance and distribution of sul genes and integron-associated intI genes among uropathogenic Escherichia coli in Queensland, Australia. J Med Microbiol 2011; 60:1633–1642 [View Article][PubMed]
    [Google Scholar]
  79. Bischoff KM, White DG, Hume ME, Poole TL, Nisbet DJ. The chloramphenicol resistance gene cmlA is disseminated on transferable plasmids that confer multiple-drug resistance in swine Escherichia coli . FEMS Microbiol Lett 2005; 243:285–291 [View Article][PubMed]
    [Google Scholar]
  80. Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 2009; 33:757–784 [View Article][PubMed]
    [Google Scholar]
  81. Sáenz Y, Vinué L, Ruiz E, Somalo S, Martínez S et al. Class 1 integrons lacking qacEDelta1 and sul1 genes in Escherichia coli isolates of food, animal and human origins. Vet Microbiol 2010; 144:493–497 [View Article][PubMed]
    [Google Scholar]
  82. Sunde M, Solheim H, Slettemeås JS. Genetic linkage between class 1 integrons with the dfrA12-orfF-aadA2 cassette array and sul3 in Escherichia coli . Vet Microbiol 2008; 130:422–425 [View Article][PubMed]
    [Google Scholar]
  83. Alonso CA, Michael GB, Li J, Somalo S, Simón C et al. Analysis of blaSHV-12-carrying Escherichia coli clones and plasmids from human, animal and food sources. J Antimicrob Chemother 2017; 72:1589–1596 [View Article][PubMed]
    [Google Scholar]
  84. Djordjevic SP, Stokes HW, Chowdhury PR. Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front Microbiol 2013; 4:86 [View Article][PubMed]
    [Google Scholar]
  85. Dawes FE, Kuzevski A, Bettelheim KA, Hornitzky MA, Djordjevic SP et al. Distribution of class 1 integrons with IS26-mediated deletions in their 3'-conserved segments in Escherichia coli of human and animal origin. PLoS One 2010; 5:e12754 [View Article][PubMed]
    [Google Scholar]
  86. Levings RS, Lightfoot D, Partridge SR, Hall RM, Djordjevic SP. The genomic island SGI1, containing the multiple antibiotic resistance region of Salmonella enterica serovar Typhimurium DT104 or variants of it, is widely distributed in other S. enterica serovars. J Bacteriol 2005; 187:4401–4409 [View Article][PubMed]
    [Google Scholar]
  87. Cain AK, Liu X, Djordjevic SP, Hall RM. Transposons related to Tn1696 in IncHI2 plasmids in multiply antibiotic resistant Salmonella enterica serovar Typhimurium from Australian animals. Microb Drug Resist 2010; 16:197–202 [View Article][PubMed]
    [Google Scholar]
  88. Reid CJ, Chowdhury PR, Djordjevic SP. Tn6026 and Tn6029 are found in complex resistance regions mobilised by diverse plasmids and chromosomal islands in multiple antibiotic resistant Enterobacteriaceae. Plasmid 2015; 80:127–137 [View Article][PubMed]
    [Google Scholar]
  89. Bleibtreu A, Gros PA, Laouénan C, Clermont O, Le Nagard H et al. Fitness, stress resistance, and extraintestinal virulence in Escherichia coli . Infect Immun 2013; 81:2733–2742 [View Article][PubMed]
    [Google Scholar]
  90. Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL et al. Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli . J Infect Dis 2013; 207:919–928 [View Article][PubMed]
    [Google Scholar]
  91. Stoesser N, Sheppard AE, Pankhurst L, de Maio N, Moore CE et al. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. MBio 2016; 7:e02162 [View Article][PubMed]
    [Google Scholar]
  92. Zhu Ge X, Jiang J, Pan Z, Hu L, Wang S et al. Comparative genomic analysis shows that avian pathogenic Escherichia coli isolate IMT5155 (O2:K1:H5; ST complex 95, ST140) shares close relationship with ST95 APEC O1:K1 and human ExPEC O18:K1 strains. PLoS One 2014; 9:e112048 [View Article][PubMed]
    [Google Scholar]
  93. Mora A, López C, Herrera A, Viso S, Mamani R et al. Emerging avian pathogenic Escherichia coli strains belonging to clonal groups O111:H4-D-ST2085 and O111:H4-D-ST117 with high virulence-gene content and zoonotic potential. Vet Microbiol 2012; 156:347–352 [View Article][PubMed]
    [Google Scholar]
  94. Schierack P, Walk N, Ewers C, Wilking H, Steinrück H et al. ExPEC-typical virulence-associated genes correlate with successful colonization by intestinal E. coli in a small piglet group. Environ Microbiol 2008; 10:1742–1751 [View Article][PubMed]
    [Google Scholar]
  95. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V et al. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci USA 2006; 103:5977–5982 [View Article][PubMed]
    [Google Scholar]
  96. Srinivasan U, Foxman B, Marrs CF. Identification of a gene encoding heat-resistant agglutinin in Escherichia coli as a putative virulence factor in urinary tract infection. J Clin Microbiol 2003; 41:285–289 [View Article][PubMed]
    [Google Scholar]
  97. Johnson JR, Jelacic S, Schoening LM, Clabots C, Shaikh N et al. The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect Immun 2005; 73:965–971 [View Article][PubMed]
    [Google Scholar]
  98. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli . Nat Rev Microbiol 2004; 2:123–140 [View Article][PubMed]
    [Google Scholar]
  99. Ewers C, Li G, Wilking H, Kiessling S, Alt K et al. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they?. Int J Med Microbiol 2007; 297:163–176 [View Article][PubMed]
    [Google Scholar]
  100. Johnson JR, Stell AL. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 2000; 181:261–272 [View Article][PubMed]
    [Google Scholar]
  101. Dixit SM, Gordon DM, Wu XY, Chapman T, Kailasapathy K et al. Diversity analysis of commensal porcine Escherichia coli - associations between genotypes and habitat in the porcine gastrointestinal tract. Microbiology 2004; 150:1735–1740 [View Article][PubMed]
    [Google Scholar]
  102. Schierack P, Walk N, Reiter K, Weyrauch KD, Wieler LH. Composition of intestinal Enterobacteriaceae populations of healthy domestic pigs. Microbiology 2007; 153:3830–3837 [View Article][PubMed]
    [Google Scholar]
  103. Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 2005; 307:1618–1621 [View Article][PubMed]
    [Google Scholar]
  104. Römer A, Wieler LH, Schierack P. Analyses of intestinal commensal Escherichia coli strains from wild boars suggest adaptation to conventional pig production conditions. Vet Microbiol 2012; 161:122–129 [View Article][PubMed]
    [Google Scholar]
  105. Turner A. Quarantine, exports and animal disease in Australia 1901-2010. Aust Vet J 2011; 89:366–371 [View Article][PubMed]
    [Google Scholar]
  106. Cheng AC, Turnidge J, Collignon P, Looke D, Barton M et al. Control of fluoroquinolone resistance through successful regulation, Australia. Emerg Infect Dis 2012; 18:1453–1460 [View Article][PubMed]
    [Google Scholar]
  107. Jordan D, Chin JJ, Fahy VA, Barton MD, Smith MG et al. Antimicrobial use in the Australian pig industry: results of a national survey. Aust Vet J 2009; 87:222–229 [View Article][PubMed]
    [Google Scholar]
  108. Abraham S, Jordan D, Wong HS, Johnson JR, Toleman MA et al. First detection of extended-spectrum cephalosporin- and fluoroquinolone-resistant Escherichia coli in Australian food-producing animals. J Glob Antimicrob Resist 2015; 3:273–277 [View Article][PubMed]
    [Google Scholar]
  109. Wyrsch ER, Chowdhury PR, Chapman TA, Charles IG, Hammond JM et al. Genomic Microbial epidemiology is needed to comprehend the global problem of antibiotic resistance and to improve pathogen diagnosis. Front Microbiol 2016; 7:843 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000143
Loading
/content/journal/mgen/10.1099/mgen.0.000143
Loading

Data & Media loading...

Supplements

Supplementary File 1

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error