1887

Abstract

The surveillance of antimicrobial-resistant isolates has proven to be one of the most valuable tools to understand the global rise of multidrug-resistant bacterial pathogens. We report the first insights into the current situation in the Caribbean, where a pilot project to monitor antimicrobial resistance (AMR) through phenotypic resistance measurements combined with whole-genome sequencing was set up in collaboration with the Caribbean Public Health Agency (CARPHA). Our first study focused on Klebsiella pneumoniae , a highly relevant organism amongst the Gram-negative opportunistic pathogens worldwide causing hospital- and community-acquired infections. Our results show that not only carbapenem resistance, but also hypervirulent strains, are circulating in patients in the Caribbean. Our current data does not allow us to infer their prevalence in the population. We argue for the urgent need to further support AMR surveillance and stewardship in this almost uncharted territory, which can make a significant impact on the reduction of antimicrobial usage. This article contains data hosted by Microreact (https://microreact.org).

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000266
2019-04-29
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/5/mgen000266.html?itemId=/content/journal/mgen/10.1099/mgen.0.000266&mimeType=html&fmt=ahah

References

  1. WHO Antimicrobial Resistance: Global Report on Surveillance Geneva: WHO; 2014 https://www.who.int/drugresistance/documents/surveillancereport/en
    [Google Scholar]
  2. Wilson H, Török ME. Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb Genom 2018; 4:000197 [View Article]
    [Google Scholar]
  3. WHO Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics Geneva: WHO; 2017 http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/
    [Google Scholar]
  4. Wyres KL, Holt KE. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol 2018; 45:131–139 [View Article][PubMed]
    [Google Scholar]
  5. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 2015; 112:E3574E3581 [View Article][PubMed]
    [Google Scholar]
  6. Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom 2016; 2:e000083 [View Article][PubMed]
    [Google Scholar]
  7. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  8. Page AJ, Taylor B, Keane JA. Multilocus sequence typing by blast from de novo assemblies against PubMLST. J Open Source Software 2016; 8:118
    [Google Scholar]
  9. Wyres KL, Wick RR, Gorrie C, Jenney A, Follador R et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb Genom 2016; 2:e000102 [View Article][PubMed]
    [Google Scholar]
  10. Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014; 58:212–220 [View Article][PubMed]
    [Google Scholar]
  11. Inouye M, Dashnow H, Raven LA, Schultz MB, Pope BJ et al. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med 2014; 6:90 [View Article][PubMed]
    [Google Scholar]
  12. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb Genom 2017; 3:e000131 [View Article][PubMed]
    [Google Scholar]
  13. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58:3895–3903 [View Article][PubMed]
    [Google Scholar]
  14. Wickham H. ggplot2 Elegant Graphics for Data Analysis Springer; 2016
    [Google Scholar]
  15. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article][PubMed]
    [Google Scholar]
  16. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  17. Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2016; 2:e000056 [View Article][PubMed]
    [Google Scholar]
  18. Stamatakis A. Using RAxML to infer phylogenies. Curr Protoc Bioinformatics 2015; 51:6.14.1–6.1414 [View Article][PubMed]
    [Google Scholar]
  19. Yu G, Lam TT, Zhu H, Guan Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol Biol Evol 2018; 35:3041–3043 [View Article][PubMed]
    [Google Scholar]
  20. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 2015; 43:e15 [View Article][PubMed]
    [Google Scholar]
  21. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed]
    [Google Scholar]
  22. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019; 35:526–528 [View Article]
    [Google Scholar]
  23. Brisse S, Passet V, Grimont PA. Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola. Int J Syst Evol Microbiol 2014; 64:3146–3152 [View Article][PubMed]
    [Google Scholar]
  24. Rodrigues C, Passet V, Rakotondrasoa A, Diallo TA, Criscuolo A et al. Description of Klebsiella africanensis sp. nov., Klebsiella variicola subsp. tropicalensis subsp. nov. and Klebsiella variicola subsp. variicola subsp. nov. Res Microbiol 2019 [View Article][PubMed]
    [Google Scholar]
  25. Elliott AG, Ganesamoorthy D, Coin L, Cooper MA, Cao MD. Complete genome sequence of Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603. Genome Announc 2016; 4:e00438-16 [View Article][PubMed]
    [Google Scholar]
  26. Kwong JC, Lane CR, Romanes F, Gonçalves da Silva A, Easton M et al. Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak. PeerJ 2018; 6:e4210 [View Article][PubMed]
    [Google Scholar]
  27. Spencer MD, Winglee K, Passaretti C, Earl AM, Manson AL et al. Whole genome sequencing detects inter-facility transmission of carbapenem-resistant Klebsiella pneumoniae. J Infect 2019; 78:187–199 [View Article][PubMed]
    [Google Scholar]
  28. Shankar C, Nabarro LEB, Muthuirulandi Sethuvel DP, Raj A, Devanga Ragupathi NK et al. Draft genome of a hypervirulent Klebsiella quasipneumoniae subsp. similipneumoniae with novel sequence type ST2320 isolated from a chronic liver disease patient. J Glob Antimicrob Resist 2017; 9:30–31 [View Article][PubMed]
    [Google Scholar]
  29. Ozer EA, Morris AR, Krapp F, Henry CS, Tyo KE et al. Draft genome sequence of a multidrug-resistant Klebsiella quasipneumoniae subsp. similipneumoniae isolate from a clinical source. Genome Announc 2016; 4:e00422-16 [View Article][PubMed]
    [Google Scholar]
  30. Garza-Ramos U, Silva-Sánchez J, Catalán-Nájera J, Barrios H, Rodríguez-Medina N et al. Draft genome sequence of a hypermucoviscous extended-spectrum-β-lactamase-producing Klebsiella quasipneumoniae subsp. similipneumoniae clinical isolate. Genome Announc 2016; 4:e00475-16 [View Article][PubMed]
    [Google Scholar]
  31. Ejaz H, Wang N, Wilksch JJ, Page AJ, Cao H et al. Phylogenetic analysis of Klebsiella pneumoniae from hospitalized children, Pakistan. Emerg Infect Dis 2017; 23:1872–1875 [View Article][PubMed]
    [Google Scholar]
  32. Heinz E, Ejaz H, Bartholdson Scott J, Wang N, Gujaran S et al. Resistance mechanisms and population structure of highly drug resistant Klebsiella in Pakistan during the introduction of the carbapenemase NDM-1. Sci Rep 2019; 9:2392 [View Article][PubMed]
    [Google Scholar]
  33. Bastian S, Nordmann P, Creton E, Malpote E, Thiery G et al. First case of NDM-1 producing Klebsiella pneumoniae in Caribbean islands. Int J Infect Dis 2015; 34:53–54 [View Article][PubMed]
    [Google Scholar]
  34. Thoms-Rodriguez CA, Mazzulli T, Christian N, Willey BM, Boyd DA et al. New Delhi metallo-β-lactamase in Jamaica. J Infect Dev Ctries 2016; 10:183–187 [View Article][PubMed]
    [Google Scholar]
  35. Akpaka PE, Swanston WH. Phenotypic detection and occurrence of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli at a tertiary hospital in Trinidad & Tobago. Braz J Infect Dis 2008; 12:516–520 [View Article]
    [Google Scholar]
  36. Esteban-Cantos A, Aracil B, Bautista V, Ortega A, Lara N et al. The carbapenemase-producing Klebsiella pneumoniae population is distinct and more clonal than the carbapenem-susceptible population. Antimicrob Agents Chemother 2017; 61:e02520-16 [View Article][PubMed]
    [Google Scholar]
  37. Bowers JR, Kitchel B, Driebe EM, MacCannell DR, Roe C et al. Genomic analysis of the emergence and rapid global dissemination of the clonal group 258 Klebsiella pneumoniae pandemic. PLoS One 2015; 10:e0133727 [View Article][PubMed]
    [Google Scholar]
  38. Moradigaravand D, Martin V, Peacock SJ, Parkhill J. Evolution and epidemiology of multidrug-resistant Klebsiella pneumoniae in the United Kingdom and Ireland. mBio 2017; 8:e01976-16 [View Article][PubMed]
    [Google Scholar]
  39. Chung The H, Karkey A, Pham Thanh D, Boinett CJ, Cain AK et al. A high-resolution genomic analysis of multidrug-resistant hospital outbreaks of Klebsiella pneumoniae. EMBO Mol Med 2015; 7:227–239 [View Article][PubMed]
    [Google Scholar]
  40. Henson SP, Boinett CJ, Ellington MJ, Kagia N, Mwarumba S et al. Molecular epidemiology of Klebsiella pneumoniae invasive infections over a decade at Kilifi County Hospital in Kenya. Int J Med Microbiol 2017; 307:422–429 [View Article][PubMed]
    [Google Scholar]
  41. Gorrie CL, Mirčeta M, Wick RR, Edwards DJ, Thomson NR et al. Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients. Clin Infect Dis 2017; 65:208–215 [View Article][PubMed]
    [Google Scholar]
  42. Ludden C, Moradigaravand D, Jamrozy D, Gouliouris T, Blane B et al. A one health study of the genetic relatedness of Klebsiella pneumoniae and their mobile elements in the East of England. Clin Infect Dis 2019 [View Article][PubMed]
    [Google Scholar]
  43. Wyres KL, Nguyen TN, Lam MM, Judd LM, van Vinh Chau N et al. Genomic surveillance for hypervirulence and multi-drug resistance in invasive Klebsiella pneumoniae from south and southeast Asia. bioRxiv
    [Google Scholar]
  44. Dong N, Zhang R, Liu L, Li R, Lin D et al. Genome analysis of clinical multilocus sequence Type 11 Klebsiella pneumoniae from China. Microb Genom 2018; 4:000149 [View Article]
    [Google Scholar]
  45. Lepuschitz S, Schill S, Stoeger A, Pekard-Amenitsch S, Huhulescu S et al. Whole genome sequencing reveals resemblance between ESBL-producing and carbapenem resistant Klebsiella pneumoniae isolates from Austrian rivers and clinical isolates from hospitals. Sci Total Environ 2019; 662:227–235 [View Article][PubMed]
    [Google Scholar]
  46. Domokos J, Damjanova I, Kristof K, Ligeti B, Kocsis B et al. Multiple benefits of plasmid-mediated quinolone resistance determinants in Klebsiella pneumoniae ST11 high-risk clone and recently emerging ST307 clone. Front Microbiol 2019; 10:157 [View Article][PubMed]
    [Google Scholar]
  47. Gu D, Dong N, Zheng Z, Lin D, Huang M et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis 2018; 18:37–46 [View Article][PubMed]
    [Google Scholar]
  48. Pérez-Vázquez M, Oteo J, García-Cobos S, Aracil B, Harris SR et al. Phylogeny, resistome and mobile genetic elements of emergent OXA-48 and OXA-245 Klebsiella pneumoniae clones circulating in Spain. J Antimicrob Chemother 2016; 71:887–896 [View Article][PubMed]
    [Google Scholar]
  49. Long SW, Olsen RJ, Eagar TN, Beres SB, Zhao P et al. Population genomic analysis of 1777 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates, Houston, Texas: unexpected abundance of clonal group 307. mBio 2017; 8:e00489-17 [View Article][PubMed]
    [Google Scholar]
  50. Davis GS, Waits K, Nordstrom L, Weaver B, Aziz M et al. Intermingled Klebsiella pneumoniae populations between retail meats and human urinary tract infections. Clin Infect Dis 2015; 61:892–899 [View Article][PubMed]
    [Google Scholar]
  51. Struve C, Roe CC, Stegger M, Stahlhut SG, Hansen DS et al. Mapping the evolution of hypervirulent Klebsiella pneumoniae. mBio 2015; 6:e00630 [View Article][PubMed]
    [Google Scholar]
  52. Lam MMC, Wyres KL, Wick RR, Judd LM, Fostervold A et al. Convergence of virulence and MDR in a single plasmid vector in MDR Klebsiella pneumoniae ST15. J Antimicrob Chemother doi: 10.1093/jac/dkz028. [Epub ahead of print]
    [Google Scholar]
  53. Runcharoen C, Moradigaravand D, Blane B, Paksanont S, Thammachote J et al. Whole genome sequencing reveals high-resolution epidemiological links between clinical and environmental Klebsiella pneumoniae. Genome Med 2017; 9:6 [View Article][PubMed]
    [Google Scholar]
  54. Smit PW, Stoesser N, Pol S, van Kleef E, Oonsivilai M et al. Transmission dynamics of hyper-endemic multi-drug resistant Klebsiella pneumoniae in a Southeast Asian neonatal unit: a longitudinal study with whole genome sequencing. Front Microbiol 2018; 9:1197 [View Article][PubMed]
    [Google Scholar]
  55. Zhan L, Wang S, Guo Y, Jin Y, Duan J et al. Outbreak by hypermucoviscous Klebsiella pneumoniae ST11 isolates with carbapenem resistance in a tertiary hospital in China. Front Cell Infect Microbiol 2017; 7:182 [View Article][PubMed]
    [Google Scholar]
  56. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis 2014; 20:1812–1820 [View Article][PubMed]
    [Google Scholar]
  57. Lam MMC, Wyres KL, Duchêne S, Wick RR, Judd LM et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun 2018; 9:2703 [View Article][PubMed]
    [Google Scholar]
  58. Cubero M, Grau I, Tubau F, Pallarés R, Dominguez MA et al. Hypervirulent Klebsiella pneumoniae clones causing bacteraemia in adults in a teaching hospital in Barcelona, Spain (2007–2013). Clin Microbiol Infect 2016; 22:154–160 [View Article][PubMed]
    [Google Scholar]
  59. Yao B, Xiao X, Wang F, Zhou L, Zhang X et al. Clinical and molecular characteristics of multi-clone carbapenem-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in a tertiary hospital in Beijing, China. Int J Infect Dis 2015; 37:107–112 [View Article][PubMed]
    [Google Scholar]
  60. Lin JC, Koh TH, Lee N, Fung CP, Chang FY et al. Genotypes and virulence in serotype K2 Klebsiella pneumoniae from liver abscess and non-infectious carriers in Hong Kong, Singapore and Taiwan. Gut Pathog 2014; 6:21 [View Article][PubMed]
    [Google Scholar]
  61. Melot B, Brisse S, Breurec S, Passet V, Malpote E et al. Community-acquired meningitis caused by a CG86 hypervirulent Klebsiella pneumoniae strain: first case report in the Caribbean. BMC Infect Dis 2016; 16:736 [View Article][PubMed]
    [Google Scholar]
  62. Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence 2013; 4:107–118 [View Article][PubMed]
    [Google Scholar]
  63. Doud MS, Grimes-Zeppegno R, Molina E, Miller N, Balachandar D et al. A k2A-positive Klebsiella pneumoniae causes liver and brain abscess in a Saint Kitt's man. Int J Med Sci 2009; 6:301–304[PubMed]
    [Google Scholar]
  64. Moura Q, Esposito F, Fernandes MR, Espinoza-Muñoz M, Souza TA et al. Genome sequence analysis of a hypermucoviscous/hypervirulent and MDR CTX-M-15/K19/ST29 Klebsiella pneumoniae isolated from human infection. Pathog Dis 2017; 75:ftx121 [View Article][PubMed]
    [Google Scholar]
  65. Cheong HS, Chung DR, Lee C, Kim SH, Kang CI et al. Emergence of serotype K1 Klebsiella pneumoniae ST23 strains co-producing the plasmid-mediated AmpC beta-lactamase DHA-1 and an extended-spectrum beta-lactamase in Korea. Antimicrob Resist Infect Control 2016; 5:50 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000266
Loading
/content/journal/mgen/10.1099/mgen.0.000266
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error