1887

Abstract

is considered the first known eukaryote to completely lack mitochondria. This conclusion is based primarily on a genomic and transcriptomic study which failed to identify any mitochondrial hallmark proteins. However, the available genome assembly has limited contiguity and around 1.5 % of the genome sequence is represented by unknown bases. To improve the contiguity, we re-sequenced the genome and transcriptome of using Oxford Nanopore Technology (ONT). The resulting draft genome is assembled in 101 contigs with an N50 value of 1.38 Mbp, almost 20 times higher than the previously published assembly. Using a newly generated ONT transcriptome, we further improve the gene prediction and add high quality untranslated region (UTR) annotations, in which we identify two putative polyadenylation signals present in the 3′UTR regions and characterise the Kozak sequence in the 5′UTR regions. All these improvements are reflected by higher BUSCO genome completeness values. Regardless of an overall more complete genome assembly without missing bases and a better gene prediction, we still failed to identify any mitochondrial hallmark genes, thus further supporting the hypothesis on the absence of mitochondrion.

Funding
This study was supported by the:
  • European Molecular Biology Organization
    • Principle Award Recipient: AnnaKarnkowska
  • H2020 European Research Council (Award 771592)
    • Principle Award Recipient: VladimirHampl
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000745
2021-12-24
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/mgen/7/12/mgen000745.html?itemId=/content/journal/mgen/10.1099/mgen.0.000745&mimeType=html&fmt=ahah

References

  1. Zhang Q, Táborský P, Silberman JD, Pánek T, Čepička I et al. Marine isolates of Trimastix marina form a plesiomorphic deep-branching lineage within Preaxostyla, separate from other known Trimastigids (Paratrimastix n. gen.). Protist 2015; 166:468–491 [View Article] [PubMed]
    [Google Scholar]
  2. Hampl V. Preaxostyla. In Archibald JM, Simpson AGB, Slamovits CH. eds Handbook of the Protists Cham: Springer International Publishing; 2017 pp 1139–1174
    [Google Scholar]
  3. Treitli SC, Kotyk M, Yubuki N, Jirounková E, Vlasáková J et al. Molecular and morphological diversity of the oxymonad genera Monocercomonoides and Blattamonas gen. nov. Protist 2018; 169:744–783 [View Article] [PubMed]
    [Google Scholar]
  4. Hampl V, Horner DS, Dyal P, Kulda J, Flegr J et al. Inference of the phylogenetic position of oxymonads based on nine genes: support for metamonada and excavata. Mol Biol Evol 2005; 22:2508–2518 [View Article] [PubMed]
    [Google Scholar]
  5. Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R et al. A eukaryote without a mitochondrial organelle. Curr Biol 2016; 26:1274–1284 [View Article] [PubMed]
    [Google Scholar]
  6. Treitli SC, Kolisko M, Husník F, Keeling PJ, Hampl V. Revealing the metabolic capacity of Streblomastix strix and its bacterial symbionts using single-cell metagenomics. Proc Natl Acad Sci U S A 2019; 116:19675–19684 [View Article] [PubMed]
    [Google Scholar]
  7. Karnkowska A, Treitli SC, Brzoň O, Novák L, Vacek V et al. The oxymonad genome displays canonical eukaryotic complexity in the absence of a mitochondrion. Mol Biol Evol 2019; 36:2292–2312 [View Article] [PubMed]
    [Google Scholar]
  8. Pasini EM, Böhme U, Rutledge GG, Voorberg-Van der Wel A, Sanders M et al. An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion. Wellcome Open Res 2017; 2:42 [View Article] [PubMed]
    [Google Scholar]
  9. Liechti N, Schürch N, Bruggmann R, Wittwer M. Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri. Sci Rep 2019; 9:16040. [View Article] [PubMed]
    [Google Scholar]
  10. Callejas-Hernández F, Rastrojo A, Poveda C, Gironès N, Fresno M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci Rep 2018; 8:14631. [View Article] [PubMed]
    [Google Scholar]
  11. Michael TP, Jupe F, Bemm F, Motley ST, Sandoval JP et al. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun 2018; 9:541. [View Article] [PubMed]
    [Google Scholar]
  12. Schmidt MH-W, Vogel A, Denton AK, Istace B, Wormit A et al. De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell 2017; 29:2336–2348 [View Article] [PubMed]
    [Google Scholar]
  13. Jain M, Koren S, Miga KH, Quick J, Rand AC et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 2018; 36:338–345 [View Article] [PubMed]
    [Google Scholar]
  14. Tyson JR, O’Neil NJ, Jain M, Olsen HE, Hieter P et al. MinION-based long-read sequencing and assembly extends the Caenorhabditis elegans reference genome. Genome Res 2018; 28:266–274 [View Article] [PubMed]
    [Google Scholar]
  15. Goodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC et al. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res 2015; 25:1750–1756 [View Article] [PubMed]
    [Google Scholar]
  16. Salas-Leiva DE, Tromer EC, Curtis BA, Jerlstrom-Hultqvist J, Kolisko M et al. A free-living protist that lacks canonical eukaryotic DNA replication and segregation systems. bioRxiv 2021; 2021.03.14.435266:
    [Google Scholar]
  17. Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 2015; 12:733–735 [View Article] [PubMed]
    [Google Scholar]
  18. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 2017; 27:737–746 [View Article] [PubMed]
    [Google Scholar]
  19. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 2014; 9:e112963 [View Article] [PubMed]
    [Google Scholar]
  20. Diamond LS. A new liquid medium for xenic cultivation of Entamoeba histolytica and other lumen-dwelling protozoa. J Parasitol 1982; 68:958–959 [PubMed]
    [Google Scholar]
  21. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 2017; 27:722–736 [View Article] [PubMed]
    [Google Scholar]
  22. Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol 2009; 10:R85. [View Article] [PubMed]
    [Google Scholar]
  23. Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 2003; 19:ii215–ii225 [View Article]
    [Google Scholar]
  24. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol 2008; 9:R7. [View Article] [PubMed]
    [Google Scholar]
  25. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22:1658–1659 [View Article] [PubMed]
    [Google Scholar]
  26. Otto TD, Dillon GP, Degrave WS, Berriman M. RATT: Rapid Annotation Transfer Tool. Nucleic Acids Res 2011; 39:e57 [View Article] [PubMed]
    [Google Scholar]
  27. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 2005; 21:1859–1875 [View Article] [PubMed]
    [Google Scholar]
  28. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  29. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013; 14:178–192 [View Article] [PubMed]
    [Google Scholar]
  30. Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 2007; 23:1061–1067 [View Article] [PubMed]
    [Google Scholar]
  31. Bailey TL. STREME: Accurate and versatile sequence motif discovery. Bioinformatics 2021btab203 [View Article] [PubMed]
    [Google Scholar]
  32. Bailey TL, Machanick P. Inferring direct DNA binding from ChIP-seq. Nucleic Acids Res 2012; 40:e128 [View Article] [PubMed]
    [Google Scholar]
  33. Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res 2004; 14:1188–1190 [View Article] [PubMed]
    [Google Scholar]
  34. Smith AC, Robinson AJ. MitoMiner v4.0: an updated database of mitochondrial localization evidence, phenotypes and diseases. Nucleic Acids Res 2019; 47:D1225–D1228 [View Article]
    [Google Scholar]
  35. Stechmann A, Hamblin K, Pérez-Brocal V, Gaston D, Richmond GS et al. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol 2008; 18:580–585 [View Article] [PubMed]
    [Google Scholar]
  36. Noguchi F, Shimamura S, Nakayama T, Yazaki E, Yabuki A et al. Metabolic capacity of mitochondrion-related organelles in the free-living anaerobic stramenopile Cantina marsupialis. Protist 2015; 166:534–550 [View Article] [PubMed]
    [Google Scholar]
  37. Pyrihová E, Motycková A, Voleman L, Wandyszewska N, Fišer R et al. A single tim translocase in the mitosomes of Giardia intestinalis illustrates convergence of protein import machines in anaerobic eukaryotes. Genome Biol Evol 2018; 10:2813–2822 [View Article] [PubMed]
    [Google Scholar]
  38. Leger MM, Kolisko M, Kamikawa R, Stairs CW, Kume K et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat Ecol Evol 2017; 1:0092 [View Article] [PubMed]
    [Google Scholar]
  39. Nývltová E, Stairs CW, Hrdý I, Rídl J, Mach J et al. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes. Mol Biol Evol 2015; 32:1039–1055 [View Article] [PubMed]
    [Google Scholar]
  40. Stairs CW, Eme L, Brown MW, Mutsaers C, Susko E et al. A SUF Fe-S cluster biogenesis system in the mitochondrion-related organelles of the anaerobic protist Pygsuia. Curr Biol 2014; 24:1176–1186 [View Article] [PubMed]
    [Google Scholar]
  41. Barberà MJ, Ruiz-Trillo I, Tufts JYA, Bery A, Silberman JD et al. Sawyeria marylandensis (Heterolobosea) has a hydrogenosome with novel metabolic properties. Eukaryot Cell 2010; 9:1913–1924 [View Article] [PubMed]
    [Google Scholar]
  42. Leger MM, Eme L, Hug LA, Roger AJ. Novel hydrogenosomes in the microaerophilic jakobid Stygiella incarcerata. Mol Biol Evol 2016; 33:2318–2336 [View Article] [PubMed]
    [Google Scholar]
  43. Alcock F, Webb CT, Dolezal P, Hewitt V, Shingu-Vasquez M et al. A small Tim homohexamer in the relict mitochondrion of Cryptosporidium. Mol Biol Evol 2012; 29:113–122 [View Article] [PubMed]
    [Google Scholar]
  44. Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T. Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 2009; 106:21731–21736 [View Article] [PubMed]
    [Google Scholar]
  45. Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol 2011; 7:e1002195. [View Article] [PubMed]
    [Google Scholar]
  46. Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2007; 2:953–971 [View Article] [PubMed]
    [Google Scholar]
  47. Fukasawa Y, Tsuji J, Fu S-C, Tomii K, Horton P et al. MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 2015; 14:1113–1126 [View Article] [PubMed]
    [Google Scholar]
  48. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580 [View Article] [PubMed]
    [Google Scholar]
  49. Imai K, Fujita N, Gromiha MM, Horton P. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins. BMC Genomics 2011; 12:79. [View Article] [PubMed]
    [Google Scholar]
  50. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000; 16:404–405 [View Article] [PubMed]
    [Google Scholar]
  51. Jones P, Binns D, Chang H-Y, Fraser M, Li W et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30:1236–1240 [View Article] [PubMed]
    [Google Scholar]
  52. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article] [PubMed]
    [Google Scholar]
  53. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article] [PubMed]
    [Google Scholar]
  54. Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci U S A 2020; 117:9451–9457 [View Article] [PubMed]
    [Google Scholar]
  55. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015; 31:3210–3212 [View Article] [PubMed]
    [Google Scholar]
  56. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596:583–589 [View Article]
    [Google Scholar]
  57. Dolezal P, Likic V, Tachezy J, Lithgow T. Evolution of the molecular machines for protein import into mitochondria. Science 2006; 313:314–318 [View Article] [PubMed]
    [Google Scholar]
  58. Denic V. A portrait of the GET pathway as a surprisingly complicated young man. Trends Biochem Sci 2012; 37:411–417 [View Article] [PubMed]
    [Google Scholar]
  59. Rada P, Makki A, Žárský V, Tachezy J. Targeting of tail-anchored proteins to Trichomonas vaginalis hydrogenosomes. Mol Microbiol 2019; 111:588–603 [View Article] [PubMed]
    [Google Scholar]
  60. Borgese N, Brambillasca S, Colombo S. How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol 2007; 19:368–375 [View Article] [PubMed]
    [Google Scholar]
  61. Callejas-Hernández F, Gironès N, Fresno M. Genome sequence of Trypanosoma cruzi strain bug2148. Genome Announc 2018; 6:e01497-17 [View Article] [PubMed]
    [Google Scholar]
  62. Xu F, Jiménez-González A, Einarsson E, Ástvaldsson Á, Peirasmaki D et al. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microbial Genomics 2020; 6:e000402 [View Article]
    [Google Scholar]
  63. Xu F, Jex A, Svärd SG. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data 2020; 7:38 [View Article] [PubMed]
    [Google Scholar]
  64. Uzlíková M, Fulnečková J, Weisz F, Sýkorová E, Nohýnková E et al. Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis. Mol Biochem Parasitol 2017; 211:31–38 [View Article] [PubMed]
    [Google Scholar]
  65. Zubácová Z, Cimbůrek Z, Tachezy J. Comparative analysis of trichomonad genome sizes and karyotypes. Mol Biochem Parasitol 2008; 161:49–54 [View Article] [PubMed]
    [Google Scholar]
  66. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 2007; 315:207–212 [View Article] [PubMed]
    [Google Scholar]
  67. Franzén O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J et al. Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species?. PLoS Pathog 2009; 5:e1000560 [View Article] [PubMed]
    [Google Scholar]
  68. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J et al. Comparative genomics of trypanosomatid parasitic protozoa. Science 2005; 309:404–409 [View Article] [PubMed]
    [Google Scholar]
  69. Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 2012; 7:e30087 [View Article] [PubMed]
    [Google Scholar]
  70. Ip CLC, Loose M, Tyson JR, de Cesare M, Brown BL et al. MinION Analysis and Reference Consortium: Phase 1 data release and analysis. F1000Res 2015; 4:1075 [View Article] [PubMed]
    [Google Scholar]
  71. Li Y, Fang C, Fu Y, Hu A, Li C et al. A survey of transcriptome complexity in Sus scrofa using single-molecule long-read sequencing. DNA Res 2018; 25:421–437 [View Article] [PubMed]
    [Google Scholar]
  72. Beiki H, Liu H, Huang J, Manchanda N, Nonneman D et al. Improved annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data. BMC Genomics 2019; 20:344 [View Article] [PubMed]
    [Google Scholar]
  73. Ye Y, Zhang H, Li D, Zhuo J, Shen Y et al. Chromosome‐level assembly of the brown planthopper genome with a characterized Y chromosome. Mol Ecol Resour 2021; 21:1287–1298 [View Article]
    [Google Scholar]
  74. Cook DE, Valle-Inclan JE, Pajoro A, Rovenich H, Thomma BPHJ et al. Long-read annotation: automated eukaryotic genome annotation based on long-read cDNA sequencing. Plant Physiol 2019; 179:38–54 [View Article] [PubMed]
    [Google Scholar]
  75. Cenik C, Derti A, Mellor JC, Berriz GF, Roth FP. Genome-wide functional analysis of human 5’ untranslated region introns. Genome Biol 2010; 11:R29 [View Article] [PubMed]
    [Google Scholar]
  76. Bianchi M, Crinelli R, Giacomini E, Carloni E, Magnani M. A potent enhancer element in the 5’-UTR intron is crucial for transcriptional regulation of the human ubiquitin C gene. Gene 2009; 448:88–101 [View Article] [PubMed]
    [Google Scholar]
  77. Fablet M, Bueno M, Potrzebowski L, Kaessmann H. Evolutionary origin and functions of retrogene introns. Mol Biol Evol 2009; 26:2147–2156 [View Article] [PubMed]
    [Google Scholar]
  78. Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 2012; 69:3613–3634 [View Article] [PubMed]
    [Google Scholar]
  79. Mayr C. What Are 3’ UTRs Doing?. Cold Spring Harb Perspect Biol 2019; 11:a034728. [View Article] [PubMed]
    [Google Scholar]
  80. Kozak M. An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 1987; 15:8125–8148 [View Article] [PubMed]
    [Google Scholar]
  81. Kozak M. The scanning model for translation: an update. J Cell Biol 1989; 108:229–241 [View Article] [PubMed]
    [Google Scholar]
  82. Hamilton R, Watanabe CK, de Boer HA. Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res 1987; 15:3581–3593 [View Article] [PubMed]
    [Google Scholar]
  83. Yamauchi K. The sequence flanking translational initiation site in protozoa. Nucleic Acids Res 1991; 19:2715–2720 [View Article] [PubMed]
    [Google Scholar]
  84. Seeber F. Consensus sequence of translational initiation sites from Toxoplasma gondii genes. Parasitol Res 1997; 83:309–311 [View Article] [PubMed]
    [Google Scholar]
  85. Wahle E, Rüegsegger U. 3’-End processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 1999; 23:277–295 [View Article] [PubMed]
    [Google Scholar]
  86. Chan SL, Huppertz I, Yao C, Weng L, Moresco JJ et al. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3’ processing. Genes Dev 2014; 28:2370–2380 [View Article] [PubMed]
    [Google Scholar]
  87. Proudfoot NJ, Brownlee GG. 3’ non-coding region sequences in eukaryotic messenger RNA. Nature 1976; 263:211–214 [View Article] [PubMed]
    [Google Scholar]
  88. Clayton C, Michaeli S. 3’ processing in protists. Wiley Interdiscip Rev RNA 2011; 2:247–255 [View Article] [PubMed]
    [Google Scholar]
  89. Que X, Svärd SG, Meng TC, Hetsko ML, Aley SB et al. Developmentally regulated transcripts and evidence of differential mRNA processing in Giardia lamblia. Mol Biochem Parasitol 1996; 81:101–110 [View Article] [PubMed]
    [Google Scholar]
  90. Svärd SG, Meng TC, Hetsko ML, McCaffery JM, Gillin FD. Differentiation-associated surface antigen variation in the ancient eukaryote Giardia lamblia. Mol Microbiol 1998; 30:979–989 [View Article] [PubMed]
    [Google Scholar]
  91. Espinosa N, Hernández R, López-Griego L, López-Villaseñor I. Separable putative polyadenylation and cleavage motifs in Trichomonas vaginalis mRNAs. Gene 2002; 289:81–86 [View Article] [PubMed]
    [Google Scholar]
  92. Fuentes V, Barrera G, Sánchez J, Hernández R, López-Villaseñor I. Functional analysis of sequence motifs involved in the polyadenylation of Trichomonas vaginalis mRNAs. Eukaryot Cell 2012; 11:725–734 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000745
Loading
/content/journal/mgen/10.1099/mgen.0.000745
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

EXCEL

Supplementary material 3

EXCEL

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error