1887

Abstract

Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzis genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a ‘core compartment’ and a ‘disruptive compartment’ which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes.

Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000177
2018-04-30
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/5/mgen000177.html?itemId=/content/journal/mgen/10.1099/mgen.0.000177&mimeType=html&fmt=ahah

References

  1. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G et al. The genome of the kinetoplastid parasite, Leishmania major . Science 2005; 309:436–442 [View Article][PubMed]
    [Google Scholar]
  2. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H et al. The genome of the African trypanosome Trypanosoma brucei . Science 2005; 309:416–422 [View Article][PubMed]
    [Google Scholar]
  3. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005; 309:409–415 [View Article][PubMed]
    [Google Scholar]
  4. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J et al. Comparative genomics of trypanosomatid parasitic protozoa. Science 2005; 309:404–409 [View Article][PubMed]
    [Google Scholar]
  5. Kissinger JC. A tale of three genomes: the kinetoplastids have arrived. Trends Parasitol 2006; 22:240–243 [View Article][PubMed]
    [Google Scholar]
  6. Grisard EC, Teixeira SM, de Almeida LG, Stoco PH, Gerber AL et al. Trypanosoma cruzi clone Dm28c draft genome sequence. Genome Announc 2014; 2:e01114-13 [View Article][PubMed]
    [Google Scholar]
  7. Franzén O, Ochaya S, Sherwood E, Lewis MD, Llewellyn MS et al. Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL brener. PLoS Negl Trop Dis 2011; 5:e984 [View Article][PubMed]
    [Google Scholar]
  8. Franzén O, Talavera-López C, Ochaya S, Butler CE, Messenger LA et al. Comparative genomic analysis of human infective Trypanosoma cruzi lineages with the bat-restricted subspecies T. cruzi marinkellei . BMC Genomics 2012; 13:531 [View Article][PubMed]
    [Google Scholar]
  9. Weatherly DB, Boehlke C, Tarleton RL. Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics 2009; 10:255 [View Article][PubMed]
    [Google Scholar]
  10. Chien JT, Pakala SB, Geraldo JA, Lapp SA, Humphrey JC et al. High-quality genome assembly and annotation for Plasmodium coatneyi, generated using single-molecule real-time PacBio technology. Genome Announc 2016; 4:e00883-16 [View Article][PubMed]
    [Google Scholar]
  11. Rutledge GG, Marr I, Huang GKL, Auburn S, Marfurt J et al. Genomic characterization of recrudescent Plasmodium malariae after treatment with artemether/lumefantrine. Emerg Infect Dis 2017; 23:1300–1307 [View Article][PubMed]
    [Google Scholar]
  12. Contreras VT, Araujo-Jorge TC, Bonaldo MC, Thomaz N, Barbosa HS et al. Biological aspects of the Dm 28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz 1988; 83:123–133 [View Article][PubMed]
    [Google Scholar]
  13. Basombrío MA, Besuschio S, Cossio PM. Side effects of immunization with liver attenuated Trypanosoma cruzi in mice and rabbits. Infect Immun 1982; 36:342–350[PubMed]
    [Google Scholar]
  14. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  15. ThomasDOtto. IPA: Script to improve long read (pacbio) assemblies [Internet]; 2017 Available from https://github.com/ThomasDOtto/IPA
  16. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet 2000; 16:276–277 [View Article][PubMed]
    [Google Scholar]
  17. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421 [View Article][PubMed]
    [Google Scholar]
  18. García EA, Ziliani M, Agüero F, Bernabó G, Sánchez DO et al. TcTASV: a novel protein family in Trypanosoma cruzi identified from a subtractive trypomastigote cDNA library. PLoS Negl Trop Dis 2010; 4:e841 [View Article][PubMed]
    [Google Scholar]
  19. Li Y, Shah-Simpson S, Okrah K, Belew AT, Choi J et al. Transcriptome remodeling in Trypanosoma cruzi and human cells during intracellular infection. PLoS Pathog 2016; 12:e1005511 [View Article][PubMed]
    [Google Scholar]
  20. Greif G, Ponce de Leon M, Lamolle G, Rodriguez M, Piñeyro D et al. Transcriptome analysis of the bloodstream stage from the parasite Trypanosoma vivax . BMC Genomics 2013; 14:149 [View Article][PubMed]
    [Google Scholar]
  21. Nielsen H. Predicting secretory proteins with SignalP. Methods Mol Biol 2017; 1611:59–73 [View Article][PubMed]
    [Google Scholar]
  22. Pierleoni A, Martelli PL, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinformatics 2008; 9:392 [View Article][PubMed]
    [Google Scholar]
  23. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580 [View Article][PubMed]
    [Google Scholar]
  24. Python.org Welcome to Python.org [Internet]. Available from www.python.org/
  25. The Perl Programming Language - www.perl.org [Internet]. Available from https://www.perl.org/
  26. R Development Core Team R: a Language and Environment for Statistical Computing Version 2.0.1 Vienna, Austria: R Foundation for Statistical Computing; 2004
    [Google Scholar]
  27. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10:R25 [View Article][PubMed]
    [Google Scholar]
  28. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 2013; 41:e108 [View Article][PubMed]
    [Google Scholar]
  29. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J. 1000 Genome Project Data Processing Subgroup et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  30. Noé L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res 2005; 33:W540–W543 [View Article][PubMed]
    [Google Scholar]
  31. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645 [View Article][PubMed]
    [Google Scholar]
  32. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG et al. ACT: the Artemis comparison tool. Bioinformatics 2005; 21:3422–3423 [View Article]
    [Google Scholar]
  33. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P et al. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945 [View Article][PubMed]
    [Google Scholar]
  34. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013; 14:178–192 [View Article][PubMed]
    [Google Scholar]
  35. Buscaglia CA, Campo VA, Frasch AC, di Noia JM. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol 2006; 4:229–236 [View Article][PubMed]
    [Google Scholar]
  36. Berná L, Chiribao ML, Greif G, Rodriguez M, Alvarez-Valin F et al. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi . PeerJ 2017; 5:e3017 [View Article][PubMed]
    [Google Scholar]
  37. Freitas LM, dos Santos SL, Rodrigues-Luiz GF, Mendes TA, Rodrigues TS et al. Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS One 2011; 6:e25914 [View Article][PubMed]
    [Google Scholar]
  38. Yan T, Yoo D, Berardini TZ, Mueller LA, Weems DC et al. PatMatch: a program for finding patterns in peptide and nucleotide sequences. Nucleic Acids Res 2005; 33:W262–W266 [View Article][PubMed]
    [Google Scholar]
  39. Bartholomeu DC, Cerqueira GC, Leão AC, Darocha WD, Pais FS et al. Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi . Nucleic Acids Res 2009; 37:3407–3417 [View Article][PubMed]
    [Google Scholar]
  40. Söding J. Protein homology detection by HMM–HMM comparison. Bioinformatics 2005; 21:951–960 [View Article][PubMed]
    [Google Scholar]
  41. Enright AJ, van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002; 30:1575–1584 [View Article][PubMed]
    [Google Scholar]
  42. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  43. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  44. Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article][PubMed]
    [Google Scholar]
  45. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article][PubMed]
    [Google Scholar]
  46. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999; 27:573–580 [View Article][PubMed]
    [Google Scholar]
  47. Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM et al. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 2012; 12:240–253 [View Article][PubMed]
    [Google Scholar]
  48. Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E. Second Satellite Meeting et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 2009; 104:1051–1054 [View Article][PubMed]
    [Google Scholar]
  49. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods 2016; 13:1050–1054 [View Article][PubMed]
    [Google Scholar]
  50. Souza RT, Lima FM, Barros RM, Cortez DR, Santos MF et al. Genome size, karyotype polymorphism and chromosomal evolution in Trypanosoma cruzi . PLoS One 2011; 6:e23042 [View Article][PubMed]
    [Google Scholar]
  51. Chen YC, Liu T, Yu CH, Chiang TY, Hwang CC. Effects of GC bias in next-generation-sequencing data on de novo genome assembly. PLoS One 2013; 8:e62856 [View Article][PubMed]
    [Google Scholar]
  52. Bernardi G, Olofsson B, Filipski J, Zerial M, Salinas J et al. The mosaic genome of warm-blooded vertebrates. Science 1985; 228:953–958 [View Article][PubMed]
    [Google Scholar]
  53. Costantini M, Cammarano R, Bernardi G. The evolution of isochore patterns in vertebrate genomes. BMC Genomics 2009; 10:146 [View Article][PubMed]
    [Google Scholar]
  54. Costantini M, Alvarez-Valin F, Costantini S, Cammarano R, Bernardi G. Compositional patterns in the genomes of unicellular eukaryotes. BMC Genomics 2013; 14:755 [View Article][PubMed]
    [Google Scholar]
  55. Costantini M, Musto H. The isochores as a fundamental level of genome structure and organization: a general overview. J Mol Evol 2017; 84:93–103 [View Article][PubMed]
    [Google Scholar]
  56. Frasch AC. Functional diversity in the trans-sialidase and mucin families in Trypanosoma cruzi . Parasitol Today 2000; 16:282–286 [View Article][PubMed]
    [Google Scholar]
  57. Acosta-Serrano A, Almeida IC, Freitas-Junior LH, Yoshida N, Schenkman S. The mucin-like glycoprotein super-family of Trypanosoma cruzi: structure and biological roles. Mol Biochem Parasitol 2001; 114:143–150 [View Article][PubMed]
    [Google Scholar]
  58. Arner E, Kindlund E, Nilsson D, Farzana F, Ferella M et al. Database of Trypanosoma cruzi repeated genes: 20,000 additional gene variants. BMC Genomics 2007; 8:391 [View Article][PubMed]
    [Google Scholar]
  59. Dos Santos PF, Moreira DS, Baba EH, Volpe CMO, Ruiz JC et al. Molecular characterization of lipoamide dehydrogenase gene in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Exp Parasitol 2016; 170:1–9 [View Article][PubMed]
    [Google Scholar]
  60. Augusto-Pinto L, Bartholomeu DC, Teixeira SM, Pena SD, Machado CR. Molecular cloning and characterization of the DNA mismatch repair gene class 2 from the Trypanosoma cruzi . Gene 2001; 272:323–333 [View Article][PubMed]
    [Google Scholar]
  61. Allen TE, Ullman B. Molecular characterization and overexpression of the hypoxanthine-guanine phosphoribosyltransferase gene from Trypanosoma cruzi . Mol Biochem Parasitol 1994; 65:233–245 [View Article][PubMed]
    [Google Scholar]
  62. Xu D, Brandán CP, Basombrío MA, Tarleton RL. Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi . BMC Microbiol 2009; 9:90 [View Article][PubMed]
    [Google Scholar]
  63. Cooper R, de Jesus AR, Cross GA. Deletion of an immunodominant Trypanosoma cruzi surface glycoprotein disrupts flagellum-cell adhesion. J Cell Biol 1993; 122:149–156 [View Article][PubMed]
    [Google Scholar]
  64. Manning-Cela R, Cortés A, González-Rey E, van Voorhis WC, Swindle J et al. LYT1 protein is required for efficient in vitro infection by Trypanosoma cruzi . Infect Immun 2001; 69:3916–3923 [View Article][PubMed]
    [Google Scholar]
  65. de Souza FS, Rampazzo RC, Manhaes L, Soares MJ, Cavalcanti DP et al. Knockout of the gene encoding the kinetoplast-associated protein 3 (KAP3) in Trypanosoma cruzi: effect on kinetoplast organization, cell proliferation and differentiation. Mol Biochem Parasitol 2010; 172:90–98 [View Article][PubMed]
    [Google Scholar]
  66. Sánchez Valdéz FJ, Pérez Brandán C, Zago MP, Labriola C, Ferreira A et al. Trypanosoma cruzi carrying a monoallelic deletion of the calreticulin (TcCRT) gene are susceptible to complement mediated killing and defective in their metacyclogenesis. Mol Immunol 2013; 53:198–205 [View Article][PubMed]
    [Google Scholar]
  67. Perez Brandan C, Padilla AM, Xu D, Tarleton RL, Basombrio MA. Knockout of the dhfr-ts gene in Trypanosoma cruzi generates attenuated parasites able to confer protection against a virulent challenge. PLoS Negl Trop Dis 2011; 5:e1418 [View Article][PubMed]
    [Google Scholar]
  68. Ajioka J, Swindle J. The calmodulin-ubiquitin (CUB) genes of Trypanosoma cruzi are essential for parasite viability. Mol Biochem Parasitol 1996; 78:217–225 [View Article][PubMed]
    [Google Scholar]
  69. Buscaglia CA, Campo VA, di Noia JM, Torrecilhas AC, de Marchi CR et al. The surface coat of the mammal-dwelling infective trypomastigote stage of Trypanosoma cruzi is formed by highly diverse immunogenic mucins. J Biol Chem 2004; 279:15860–15869 [View Article][PubMed]
    [Google Scholar]
  70. Urban I, Santurio LB, Chidichimo A, Yu H, Chen X et al. Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins. Biochem J 2011; 438:303–313 [View Article][PubMed]
    [Google Scholar]
  71. Di Noia JM, Pollevick GD, Xavier MT, Previato JO, Mendoça-Previato L et al. High diversity in mucin genes and mucin molecules in Trypanosoma cruzi . J Biol Chem 1996; 271:32078–32083 [View Article][PubMed]
    [Google Scholar]
  72. Nakayasu ES, Yashunsky DV, Nohara LL, Torrecilhas AC, Nikolaev AV et al. GPIomics: global analysis of glycosylphosphatidylinositol-anchored molecules of Trypanosoma cruzi . Mol Syst Biol 2009; 5:261 [View Article][PubMed]
    [Google Scholar]
  73. Gonzalez MS, Souza MS, Garcia ES, Nogueira NF, Mello CB et al. Trypanosoma cruzi TcSMUG L-surface mucins promote development and infectivity in the triatomine vector Rhodnius prolixus . PLoS Negl Trop Dis 2013; 7:e2552 [View Article][PubMed]
    [Google Scholar]
  74. Buscaglia CA, Campetella O, Leguizamón MS, Frasch AC. The repetitive domain of Trypanosoma cruzi trans-sialidase enhances the immune response against the catalytic domain. J Infect Dis 1998; 177:431–436 [View Article][PubMed]
    [Google Scholar]
  75. Bringaud F, Ghedin E, El-Sayed NM, Papadopoulou B. Role of transposable elements in trypanosomatids. Microbes Infect 2008; 10:575–581 [View Article][PubMed]
    [Google Scholar]
  76. Thomas MC, Macias F, Alonso C, López MC. The biology and evolution of transposable elements in parasites. Trends Parasitol 2010; 26:350–362 [View Article][PubMed]
    [Google Scholar]
  77. Wicker T, Sabot F, Hua-van A, Bennetzen JL, Capy P et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007; 8:973–982 [View Article][PubMed]
    [Google Scholar]
  78. Souza RT, Santos MR, Lima FM, El-Sayed NM, Myler PJ et al. New Trypanosoma cruzi repeated element that shows site specificity for insertion. Eukaryot Cell 2007; 6:1228–1238 [View Article][PubMed]
    [Google Scholar]
  79. Gonzalez A, Prediger E, Huecas ME, Nogueira N, Lizardi PM. Minichromosomal repetitive DNA in Trypanosoma cruzi: its use in a high-sensitivity parasite detection assay. Proc Natl Acad Sci USA 1984; 81:3356–3360 [View Article][PubMed]
    [Google Scholar]
  80. Sloof P, Bos JL, Konings AF, Menke HH, Borst P et al. Characterization of satellite DNA in Trypanosoma brucei and Trypanosoma cruzi . J Mol Biol 1983; 167:1–21 [View Article][PubMed]
    [Google Scholar]
  81. Elias MC, Vargas NS, Zingales B, Schenkman S. Organization of satellite DNA in the genome of Trypanosoma cruzi . Mol Biochem Parasitol 2003; 129:1–9 [View Article][PubMed]
    [Google Scholar]
  82. Affranchino JL, Ibañez CF, Luquetti AO, Rassi A, Reyes MB et al. Identification of a Trypanosoma cruzi antigen that is shed during the acute phase of Chagas' disease. Mol Biochem Parasitol 1989; 34:221–228 [View Article][PubMed]
    [Google Scholar]
  83. Ibañez CF, Affranchino JL, Macina RA, Reyes MB, Leguizamon S et al. Multiple Trypanosoma cruzi antigens containing tandemly repeated amino acid sequence motifs. Mol Biochem Parasitol 1988; 30:27–33 [View Article][PubMed]
    [Google Scholar]
  84. Hoft DF, Kim KS, Otsu K, Moser DR, Yost WJ et al. Trypanosoma cruzi expresses diverse repetitive protein antigens. Infect Immun 1989; 57:1959–1967[PubMed]
    [Google Scholar]
  85. Goto Y, Carter D, Reed SG. Immunological dominance of Trypanosoma cruzi tandem repeat proteins. Infect Immun 2008; 76:3967–3974 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000177
Loading
/content/journal/mgen/10.1099/mgen.0.000177
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

Supplementary File 3

Supplementary File 4

Supplementary File 5

Supplementary File 6

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error