1887

Abstract

Cyanobacteria form one of the most diversified phyla of Bacteria. They are important ecologically as primary producers, for Earth evolution and biotechnological applications. Yet, Cyanobacteria are notably difficult to purify and grow axenically, and most strains in culture collections contain heterotrophic bacteria that were probably associated with Cyanobacteria in the environment. Obtaining cyanobacterial DNA without contaminant sequences is thus a challenging and time-consuming task. Here, we describe a metagenomic pipeline that enables the easy recovery of genomes from non-axenic cultures. We tested this pipeline on 17 cyanobacterial cultures from the BCCM/ULC public collection and generated novel genome sequences for 12 polar or subpolar strains and three temperate ones, including three early-branching organisms that will be useful for phylogenomics. In parallel, we assembled 31 co-cultivated bacteria (12 nearly complete) from the same cultures and showed that they mostly belong to Bacteroidetes and Proteobacteria, some of them being very closely related in spite of geographically distant sampling sites.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000212
2018-08-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/9/mgen000212.html?itemId=/content/journal/mgen/10.1099/mgen.0.000212&mimeType=html&fmt=ahah

References

  1. Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. Microbiology 1979; 111:1–61 [View Article]
    [Google Scholar]
  2. Whitton BA, Potts M. Introduction to the Cyanobacteria. In Whitton BA. (editor) Ecology of Cyanobacteria II Netherlands: Springer; 2012 pp. 1–13
    [Google Scholar]
  3. Hofmann HJ, Microflora P, Islands B. Canada: significance and systematics. J Paleontol 1976; 50:1040–1073
    [Google Scholar]
  4. Golubic S, Hofmann HJ. Comparison of holocene and mid-precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. J Paleontol 1976; 50:1074–1082
    [Google Scholar]
  5. Knoll AH, Golubic S. Proterozoic and living cyanobacteria. In Schidlowski PDM, Golubic PDS, Kimberley PDMM, Trudinger DPA. (editors) Early Organic Evolution Berlin Heidelberg: Springer; 1992 pp. 450–462
    [Google Scholar]
  6. Knoll AH. The geological consequences of evolution. Geobiology 2003; 1:3–14 [View Article]
    [Google Scholar]
  7. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ. The paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 2005; 102:11131–11136 [View Article][PubMed]
    [Google Scholar]
  8. Ochoa de Alda JA, Esteban R, Diago ML, Houmard J. The plastid ancestor originated among one of the major cyanobacterial lineages. Nat Commun 2014; 5:4937 [View Article][PubMed]
    [Google Scholar]
  9. Archibald JM. The puzzle of plastid evolution. Curr Biol 2009; 19:R81–R88 [View Article][PubMed]
    [Google Scholar]
  10. Namikoshi M, Rinehart KL. Bioactive compounds produced by cyanobacteria. J Ind Microbiol Biotechnol 1996; 17:373–384 [View Article]
    [Google Scholar]
  11. Singh S, Kate BN, Banerjee UC. Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 2005; 25:73–95 [View Article][PubMed]
    [Google Scholar]
  12. Sharma NK, Stal LJ. The economics of cyanobacteria-based biofuel production: challenges and opportunities. In Sharma NK, Rai AK, Stal LJ. (editors) Cyanobacteria New Jersey, USA: John Wiley & Sons, Ltd; 2014 pp. 167–180
    [Google Scholar]
  13. Chrismas NAM, Anesio AM, Sánchez-Baracaldo P. The future of genomics in polar and alpine cyanobacteria. FEMS Microbiol Ecol 2018; 94: [View Article][PubMed]
    [Google Scholar]
  14. Ferris MJ, Hirsch CF. Method for isolation and purification of cyanobacteria. Appl Environ Microbiol 1991; 57:1448–1452[PubMed]
    [Google Scholar]
  15. Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S et al. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. Isme J 2009; 3:314–325 [View Article][PubMed]
    [Google Scholar]
  16. Prasad S, Pratibha MS, Manasa P, Buddhi S, Begum Z et al. Diversity of chemotactic heterotrophic bacteria associated with arctic cyanobacteria. Curr Microbiol 2013; 66:64–71 [View Article][PubMed]
    [Google Scholar]
  17. Louati I, Pascault N, Debroas D, Bernard C, Humbert JF et al. Structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus. PLoS One 2015; 10:e0140614 [View Article][PubMed]
    [Google Scholar]
  18. Tytgat B, Verleyen E, Obbels D, Peeters K, de Wever A et al. Bacterial diversity assessment in Antarctic terrestrial and aquatic microbial mats: a comparison between bidirectional pyrosequencing and cultivation. PLoS One 2014; 9:e97564 [View Article][PubMed]
    [Google Scholar]
  19. Peeters K, Verleyen E, Hodgson DA, Convey P, Ertz D et al. Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol 2012; 35:543–554 [View Article]
    [Google Scholar]
  20. Lupton FS, Marshall KC. Specific adhesion of bacteria to heterocysts of Anabaena spp. and its ecological significance. Appl Environ Microbiol 1981; 42:1085–1092[PubMed]
    [Google Scholar]
  21. Zhu L, Zancarini A, Louati I, de Cesare S, Duval C et al. Bacterial communities associated with four cyanobacterial genera display structural and functional differences: evidence from an experimental approach. Front Microbiol 2016; 7:1662 [View Article][PubMed]
    [Google Scholar]
  22. Lima AR, Siqueira AS, dos Santos BG, da Silva FD, Lima CP et al. Draft genome sequence of Blastomonas sp. strain CACIA 14H2, a heterotrophic bacterium associated with cyanobacteria. Genome Announc 2014; 2:e01200-13 [View Article][PubMed]
    [Google Scholar]
  23. van Goethem MW, Makhalanyane TP, Cowan DA, Valverde A. Cyanobacteria and Alphaproteobacteria may facilitate cooperative interactions in niche commu nities. Front Microbiol 2017; 8:2099 [View Article][PubMed]
    [Google Scholar]
  24. Cornet L, Meunier L, van Vlierberghe M, Léonard RR, Durieu B et al. Consensus assessment of the contamination level of publicly available cyanobacterial genomes. PLoS One 2018; 13:e0200323 [View Article][PubMed]
    [Google Scholar]
  25. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 2017; 35:725–731 [View Article][PubMed]
    [Google Scholar]
  26. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017; 27:824–834 [View Article][PubMed]
    [Google Scholar]
  27. Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015; 3:e1165 [View Article][PubMed]
    [Google Scholar]
  28. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  29. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods 2015; 12:59–60 [View Article][PubMed]
    [Google Scholar]
  30. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011; 27:578–579 [View Article][PubMed]
    [Google Scholar]
  31. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  32. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  33. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  34. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016; 44:D733–D745 [View Article][PubMed]
    [Google Scholar]
  35. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010; 26:2460–2461 [View Article][PubMed]
    [Google Scholar]
  36. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 2015; 16:157 [View Article][PubMed]
    [Google Scholar]
  37. Simion P, Philippe H, Baurain D, Jager M, Richter DJ et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr Biol 2017; 27:958–967 [View Article][PubMed]
    [Google Scholar]
  38. Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire JY et al. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat Ecol Evol 2017; 1:1370–1378 [View Article][PubMed]
    [Google Scholar]
  39. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  40. Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 2010; 10:210 [View Article][PubMed]
    [Google Scholar]
  41. Roure B, Rodriguez-Ezpeleta N, Philippe H. SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol Biol 2007; 7:S2 [View Article][PubMed]
    [Google Scholar]
  42. Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 2013; 62:611–615 [View Article][PubMed]
    [Google Scholar]
  43. Jauffrit F, Penel S, Delmotte S, Rey C, de Vienne DM et al. RiboDB database: a comprehensive resource for prokaryotic systematics. Mol Biol Evol 2016; 33:2170–2172 [View Article][PubMed]
    [Google Scholar]
  44. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  45. Philippe H. MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res 1993; 21:5264–5272 [View Article][PubMed]
    [Google Scholar]
  46. Bah T. Inkscape: Guide to a Vector Drawing Program (Digital Short Cut) Boston, USA: Pearson Education; 2009
    [Google Scholar]
  47. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  48. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  49. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article][PubMed]
    [Google Scholar]
  50. Lee JZ, Burow LC, Woebken D, Everroad RC, Kubo MD et al. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats. Front Microbiol 2014; 5:61 [View Article][PubMed]
    [Google Scholar]
  51. Sánchez-Baracaldo P. Origin of marine planktonic cyanobacteria. Sci Rep 2015; 5:17418 [View Article][PubMed]
    [Google Scholar]
  52. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP et al. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 2013; 110:1053–1058 [View Article][PubMed]
    [Google Scholar]
  53. Lara Y, Durieu B, Cornet L, Verlaine O, Rippka R et al. Draft genome sequence of the axenic strain Phormidesmis priestleyi ULC007, a cyanobacterium isolated from Lake Bruehwiler (Larsemann Hills, Antarctica). Genome Announc 2017; 5:e01546-16 [View Article][PubMed]
    [Google Scholar]
  54. Komarek J, Kaštovský J, Mareš J, Johansen J. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 2014; 86:295–335
    [Google Scholar]
  55. Saha SK, Uma L, Subramanian G. An improved method for marine cyanobacterial DNA isolation. World J Microbiol Biotechnol 2005; 21:877–881 [View Article]
    [Google Scholar]
  56. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005; 21:3674–3676 [View Article][PubMed]
    [Google Scholar]
  57. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J et al. Binning metagenomic contigs by coverage and composition. Nat Methods 2014; 11:1144–1146 [View Article][PubMed]
    [Google Scholar]
  58. Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P et al. GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ 2014; 2:e603 [View Article][PubMed]
    [Google Scholar]
  59. Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome 2014; 2:26 [View Article][PubMed]
    [Google Scholar]
  60. Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 2014; 32:822–828 [View Article][PubMed]
    [Google Scholar]
  61. Klappenbach JA, Dunbar JM, Schmidt TM. rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 2000; 66:1328–1333 [View Article][PubMed]
    [Google Scholar]
  62. Koren S, Phillippy AM. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr Opin Microbiol 2015; 23:110–120 [View Article][PubMed]
    [Google Scholar]
  63. Frank JA, Pan Y, Tooming-Klunderud A, Eijsink VG, McHardy AC et al. Improved metagenome assemblies and taxonomic binning using long-read circular consensus sequence data. Sci Rep 2016; 6:25373 [View Article][PubMed]
    [Google Scholar]
  64. Beaulaurier J, Zhu S, Deikus G, Mogno I, Zhang XS et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat Biotechnol 2018; 36:61–69 [View Article][PubMed]
    [Google Scholar]
  65. Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K et al. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol 2017; 27:386–391 [View Article][PubMed]
    [Google Scholar]
  66. Blank CE. Origin and early evolution of photosynthetic eukaryotes in freshwater environments: reinterpreting proterozoic paleobiology and biogeochemical processes in light of trait evolution. J Phycol 2013; 49:1040–1055 [View Article][PubMed]
    [Google Scholar]
  67. Uyeda JC, Harmon LJ, Blank CE. A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geologic time. PLoS One 2016; 11:e0162539 [View Article][PubMed]
    [Google Scholar]
  68. Sánchez-Baracaldo P, Raven JA, Pisani D, Knoll AH. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc Natl Acad Sci USA 2017; 114:E7737E7745 [View Article][PubMed]
    [Google Scholar]
  69. Szöllosi GJ, Boussau B, Abby SS, Tannier E, Daubin V. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proc Natl Acad Sci USA 2012; 109:17513–17518 [View Article][PubMed]
    [Google Scholar]
  70. Tria FDK, Landan G, Dagan T. Phylogenetic rooting using minimal ancestor deviation. Nat Ecol Evol 2017; 1:193 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000212
Loading
/content/journal/mgen/10.1099/mgen.0.000212
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error