1887

Abstract

Although aneuploidy usually results in severe abnormalities in multicellular eukaryotes, recent data suggest that it could be beneficial for unicellular eukaryotes, such as yeast and trypanosomatid parasites, providing increased survival under stressful conditions. Among characterized trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the genus Leishmania stand out due to their importance in public health, infecting around 20 million people worldwide. The presence of aneuploidies in T. cruzi and Leishmania was recently confirmed by analysis based on next generation sequencing (NGS) and fluorescence in situ hybridization, where they have been associated with adaptation during transmission between their insect vectors and mammalian hosts and in promoting drug resistance. Although chromosomal copy number variations (CCNVs) are present in the aforementioned species, PFGE and fluorescence cytophotometry analyses suggest that aneuploidies are absent from T. brucei. A re-evaluation of CCNV in T. b gambiense based on NGS reads confirmed the absence of aneuploidies in this subspecies. However, the presence of aneuploidies in the other two T. brucei subspecies, T. b. brucei and T. b. rhodesiense, has not been evaluated using NGS approaches. In the present work, we tested for aneuploidies in 26 T. brucei isolates, including samples from the three T. brucei subspecies, by both allele frequency and read depth coverage analyses. These analyses showed that none of the T. brucei subspecies presents aneuploidies, which could be related to differences in the mechanisms of DNA replication and recombination in these parasites when compared with Leishmania.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000223
2018-09-27
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/10/mgen000223.html?itemId=/content/journal/mgen/10.1099/mgen.0.000223&mimeType=html&fmt=ahah

References

  1. Brun R, Blum J, Chappuis F, Burri C. Human African trypanosomiasis. Lancet 2010; 375:148–159 [View Article][PubMed]
    [Google Scholar]
  2. Malvy D, Chappuis F. Sleeping sickness. Clin Microbiol Infect 2011; 17:986–995 [View Article][PubMed]
    [Google Scholar]
  3. Deborggraeve S, Koffi M, Jamonneau V, Bonsu FA, Queyson R et al. Molecular analysis of archived blood slides reveals an atypical human Trypanosoma infection. Diagn Microbiol Infect Dis 2008; 61:428–433 [View Article][PubMed]
    [Google Scholar]
  4. Bastien P, Blaineau C, Pages M. Leishmania: sex, lies and karyotype. Parasitol Today 1992; 8:174–177 [View Article][PubMed]
    [Google Scholar]
  5. Gibson WC, Osinga KA, Michels PA, Borst P. Trypanosomes of subgenus Trypanozoon are diploid for housekeeping genes. Mol Biochem Parasitol 1985; 16:231–242 [View Article][PubMed]
    [Google Scholar]
  6. Hope M, Macleod A, Leech V, Melville S, Sasse J et al. Analysis of ploidy (in megabase chromosomes) in Trypanosoma brucei after genetic exchange. Mol Biochem Parasitol 1999; 104:1–9 [View Article][PubMed]
    [Google Scholar]
  7. Tait A. Evidence for diploidy and mating in trypanosomes. Nature 1980; 287:536–538 [View Article]
    [Google Scholar]
  8. Borst P, Fase-Fowler F, Frasch ACC, Hoeijmakers JHJ, Weijers PJ. Characterization of DNA from Trypanosoma brucei and related trypanosomes by restriction endonuclease digestion. Mol Biochem Parasitol 1980; 1:221–246 [View Article]
    [Google Scholar]
  9. El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J et al. Comparative genomics of trypanosomatid parasitic protozoa. Science 2005; 309:404–409 [View Article][PubMed]
    [Google Scholar]
  10. El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 2005; 309:409–415 [View Article][PubMed]
    [Google Scholar]
  11. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H et al. The genome of the African trypanosome Trypanosoma brucei. Science 2005; 309:416–422 [View Article][PubMed]
    [Google Scholar]
  12. Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005; 309:436–442 [View Article][PubMed]
    [Google Scholar]
  13. Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 2011; 21:2129–2142 [View Article][PubMed]
    [Google Scholar]
  14. Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 2011; 21:2143–2156 [View Article][PubMed]
    [Google Scholar]
  15. Reis-Cunha JL, Rodrigues-Luiz GF, Valdivia HO, Baptista RP, Mendes TA et al. Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genomics 2015; 16:499 [View Article][PubMed]
    [Google Scholar]
  16. Dujardin JC, Mannaert A, Durrant C, Cotton JA. Mosaic aneuploidy in Leishmania: the perspective of whole genome sequencing. Trends Parasitol 2014; 30:554–555 [View Article][PubMed]
    [Google Scholar]
  17. Mannaert A, Downing T, Imamura H, Dujardin JC. Adaptive mechanisms in pathogens: universal aneuploidy in Leishmania. Trends Parasitol 2012; 28:370–376 [View Article][PubMed]
    [Google Scholar]
  18. Valdivia HO, Reis-Cunha JL, Rodrigues-Luiz GF, Baptista RP, Baldeviano GC et al. Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics 2015; 16:715 [View Article][PubMed]
    [Google Scholar]
  19. Lachaud L, Bourgeois N, Kuk N, Morelle C, Crobu L et al. Constitutive mosaic aneuploidy is a unique genetic feature widespread in the Leishmania genus. Microbes Infect 2014; 16:61–66 [View Article][PubMed]
    [Google Scholar]
  20. Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J et al. Modulation of aneuploidy in Leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. MBio 2017; 8:1–14 [View Article][PubMed]
    [Google Scholar]
  21. Prieto Barja P, Pescher P, Bussotti G, Dumetz F, Imamura H et al. Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nat Ecol Evol 2017; 1:1961–1969 [View Article][PubMed]
    [Google Scholar]
  22. Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM et al. Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage. MBio 2017; 8:e01393-17 [View Article][PubMed]
    [Google Scholar]
  23. Torres EM, Williams BR, Amon A. Aneuploidy: cells losing their balance. Genetics 2008; 179:737–746 [View Article][PubMed]
    [Google Scholar]
  24. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2001; 2:280–291 [View Article][PubMed]
    [Google Scholar]
  25. Stankiewicz P, Lupski JR. Structural variation in the human genome and its role in disease. Annu Rev Med 2010; 61:437–455 [View Article][PubMed]
    [Google Scholar]
  26. Minning TA, Weatherly DB, Flibotte S, Tarleton RL. Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization. BMC Genomics 2011; 12:139 [View Article][PubMed]
    [Google Scholar]
  27. Borst P, van der Ploeg M, van Hoek JF, Tas J, James J. On the DNA content and ploidy of trypanosomes. Mol Biochem Parasitol 1982; 6:13–23 [View Article][PubMed]
    [Google Scholar]
  28. Tait A. Evidence for diploidy and mating in trypanosomes. Nature 1980; 287:536–538 [View Article][PubMed]
    [Google Scholar]
  29. Tait A, Turner CM, Le Page RW, Wells JM. Genetic evidence that metacyclic forms of Trypanosoma brucei are diploid. Mol Biochem Parasitol 1989; 37:247–255 [View Article][PubMed]
    [Google Scholar]
  30. Gibson W, Garside L, Bailey M. Trisomy and chromosome size changes in hybrid trypanosomes from a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei. Mol Biochem Parasitol 1992; 51:189–199 [View Article][PubMed]
    [Google Scholar]
  31. Gibson W, Peacock L, Ferris V, Williams K, Bailey M. The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei. Parasit Vectors 2008; 1:4–15 [View Article][PubMed]
    [Google Scholar]
  32. Weir W, Capewell P, Foth B, Clucas C, Pountain A et al. Population genomics reveals the origin and asexual evolution of human infective trypanosomes. Elife 2016; 5:1–14 [View Article][PubMed]
    [Google Scholar]
  33. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  34. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article][PubMed]
    [Google Scholar]
  35. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Prepr arXiv 2013
    [Google Scholar]
  36. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25:2078–2079 [View Article][PubMed]
    [Google Scholar]
  37. Schmidt S. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Proc Int Conf Intellect Capital, Knowl Manag Organ Learn 2009; 20:254–260
    [Google Scholar]
  38. Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20:1297–1303 [View Article][PubMed]
    [Google Scholar]
  39. Tihon E, Imamura H, Dujardin JC, van den Abbeele J, van den Broeck F. Discovery and genomic analyses of hybridization between divergent lineages of Trypanosoma congolense, causative agent of Animal African Trypanosomiasis. Mol Ecol 2017; 26:6524–6538 [View Article][PubMed]
    [Google Scholar]
  40. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol 2008; 25:1253–1256 [View Article][PubMed]
    [Google Scholar]
  41. Guindon S, Delsuc F, Dufayard JF, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 2009; 537:113–137 [View Article][PubMed]
    [Google Scholar]
  42. Richardson JB, Lee KY, Mireji P, Enyaru J, Sistrom M et al. Genomic analyses of African Trypanozoon strains to assess evolutionary relationships and identify markers for strain identification. PLoS Negl Trop Dis 2017; 11:e0005949 [View Article][PubMed]
    [Google Scholar]
  43. Tihon E, Imamura H, Dujardin JC, van den Abbeele J. Evidence for viable and stable triploid Trypanosoma congolense parasites. Parasit Vectors 2017; 10:1–8 [View Article][PubMed]
    [Google Scholar]
  44. Tiengwe C, Marcello L, Farr H, Dickens N, Kelly S et al. Genome-wide analysis reveals extensive functional interaction between DNA replication initiation and transcription in the genome of Trypanosoma brucei. Cell Rep 2012; 2:185–197 [View Article][PubMed]
    [Google Scholar]
  45. Marques CA, Mcculloch R. Conservation and variation in strategies for DNA replication of kinetoplastid nuclear genomes. Curr Genomics 2018; 19:98–109 [View Article][PubMed]
    [Google Scholar]
  46. Marques CA, Dickens NJ, Paape D, Campbell SJ, Mcculloch R et al. Genome-wide mapping reveals single-origin chromosome replication in Leishmania, a eukaryotic microbe. Genome Biol 2015; 16:230 [View Article][PubMed]
    [Google Scholar]
  47. Sterkers Y, Lachaud L, Crobu L, Bastien P, Pagès M. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol 2011; 13:274–283 [View Article][PubMed]
    [Google Scholar]
  48. Sterkers Y, Crobu L, Lachaud L, Pagès M, Bastien P. Parasexuality and mosaic aneuploidy in Leishmania: alternative genetics. Trends Parasitol 2014; 30:429–435 [View Article][PubMed]
    [Google Scholar]
  49. Bennett RJ. The parasexual lifestyle of Candida albicans. Curr Opin Microbiol 2015; 28:10–17 [View Article][PubMed]
    [Google Scholar]
  50. Messenger LA, Miles MA. Evidence and importance of genetic exchange among field populations of Trypanosoma cruzi. Acta Trop 2015; 151:150–155 [View Article][PubMed]
    [Google Scholar]
  51. Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ et al. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol 2009; 39:1305–1317 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000223
Loading
/content/journal/mgen/10.1099/mgen.0.000223
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error