1887

Abstract

Campylobacter jejuni is the most common cause of bacterial diarrheal disease in the world. Clinical outcomes of infection can range from asymptomatic infection to life-threatening extraintestinal infections. This variability in outcomes for infected patients has raised questions as to whether genetic differences between C. jejuni isolates contribute to their likelihood of causing severe disease. In this study, we compare the genomes of ten C. jejuni isolates that were implicated in extraintestinal infections with reference gastrointestinal isolates, in order to identify unusual patterns of sequence variation associated with infection outcome. We identified a collection of genes that display a higher burden of uncommon mutations in invasive isolates compared with gastrointestinal close relatives, including some that have been previously linked to virulence and invasiveness in C. jejuni . Among the top genes identified were mreB and pgp1, which are both involved in determining cell shape. Electron microscopy confirmed morphological differences in isolates carrying unusual sequence variants of these genes, indicating a possible relationship between extraintestinal infection and changes in cell morphology.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000251
2019-02-19
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/2/mgen000251.html?itemId=/content/journal/mgen/10.1099/mgen.0.000251&mimeType=html&fmt=ahah

References

  1. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med 2015; 12:e1001921 [View Article][PubMed]
    [Google Scholar]
  2. Carvalho AC, Ruiz-Palacios GM, Ramos-Cervantes P, Cervantes LE, Jiang X et al. Molecular characterization of invasive and noninvasive Campylobacter jejuni and Campylobacter coli isolates. J Clin Microbiol 2001; 39:1353–1359 [View Article][PubMed]
    [Google Scholar]
  3. Lee G, Pan W, Peñataro Yori P, Paredes Olortegui M, Tilley D et al. Symptomatic and asymptomatic Campylobacter infections associated with reduced growth in Peruvian children. PLoS Negl Trop Dis 2013; 7:e2036 [View Article][PubMed]
    [Google Scholar]
  4. Calva JJ, Ruiz-Palacios GM, Lopez-Vidal AB, Ramos A, Bojalil R. Cohort study of intestinal infection with campylobacter in Mexican children. Lancet 1988; 1:503–506 [View Article][PubMed]
    [Google Scholar]
  5. Goossens H, Henocque G, Kremp L, Rocque J, Boury R et al. Nosocomial outbreak of Campylobacter jejuni meningitis in newborn infants. Lancet 1986; 2:146–149 [View Article][PubMed]
    [Google Scholar]
  6. Skirrow MB, Jones DM, Sutcliffe E, Benjamin J. Campylobacter bacteraemia in England and Wales, 1981-91. Epidemiol Infect 1993; 110:567–573 [View Article][PubMed]
    [Google Scholar]
  7. Nielsen H, Hansen KK, Gradel KO, Kristensen B, Ejlertsen T et al. Bacteraemia as a result of Campylobacter species: a population-based study of epidemiology and clinical risk factors. Clin Microbiol Infect 2010; 16:57–61 [View Article][PubMed]
    [Google Scholar]
  8. Ruiz-Palacios GM, Torres J, Torres NI, Escamilla E, Ruiz-Palacios BR et al. Cholera-like enterotoxin produced by Campylobacter jejuni. Characterisation and clinical significance. Lancet 1983; 2:250–253[PubMed]
    [Google Scholar]
  9. Fauchere JL, Rosenau A, Veron M, Moyen EN, Richard S et al. Association with HeLa cells of Campylobacter jejuni and Campylobacter coli isolated from human feces. Infect Immun 1986; 54:283–287[PubMed]
    [Google Scholar]
  10. Louwen R, van Baarlen P, van Vliet AH, van Belkum A, Hays JP et al. Campylobacter bacteremia: a rare and under-reported event?. Eur J Microbiol Immunol 2012; 2:76–87 [View Article][PubMed]
    [Google Scholar]
  11. Wassenaar TM, Bleumink-Pluym NM, van der Zeijst BA. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. Embo J 1991; 10:2055–2061 [View Article][PubMed]
    [Google Scholar]
  12. Konkel ME, Garvis SG, Tipton SL, Anderson DE, Cieplak W. Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol Microbiol 1997; 24:953–963 [View Article][PubMed]
    [Google Scholar]
  13. Konkel ME, Kim BJ, Rivera-Amill V, Garvis SG. Bacterial secreted proteins are required for the internaliztion of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 1999; 32:691–701 [View Article][PubMed]
    [Google Scholar]
  14. Bacon DJ, Alm RA, Burr DH, Hu L, Kopecko DJ et al. Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect Immun 2000; 68:4384–4390 [View Article][PubMed]
    [Google Scholar]
  15. Müller J, Schulze F, Müller W, Hänel I. PCR detection of virulence-associated genes in Campylobacter jejuni strains with differential ability to invade Caco-2 cells and to colonize the chick gut. Vet Microbiol 2006; 113:123–129 [View Article][PubMed]
    [Google Scholar]
  16. Fearnley C, Manning G, Bagnall M, Javed MA, Wassenaar TM et al. Identification of hyperinvasive Campylobacter jejuni strains isolated from poultry and human clinical sources. J Med Microbiol 2008; 57:570–580 [View Article][PubMed]
    [Google Scholar]
  17. Nielsen H, Persson S, Olsen KE, Ejlertsen T, Kristensen B et al. Bacteraemia with Campylobacter jejuni: no association with the virulence genes iam, cdtB, capA or virB. Eur J Clin Microbiol Infect Dis 2010; 29:357–358 [View Article][PubMed]
    [Google Scholar]
  18. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global Epidemiology of Campylobacter Infection. Clin Microbiol Rev 2015; 28:687–720 [View Article][PubMed]
    [Google Scholar]
  19. Sears A, Baker MG, Wilson N, Marshall J, Muellner P et al. Marked campylobacteriosis decline after interventions aimed at poultry, New Zealand. Emerg Infect Dis 2011; 17:1007–1015 [View Article][PubMed]
    [Google Scholar]
  20. Institute of Environmental Science and Research Ltd New Zealand Public Health Surveillance Report; 2018 https://surv.esr.cri.nz/PDF_surveillance/NZPHSR/2018/NZPHSRMarch2018.pdf
  21. Nichols GL, Richardson JF, Sheppard SK, Lane C, Sarran C. Campylobacter epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ Open 2012; 2:e001179 [View Article][PubMed]
    [Google Scholar]
  22. Cody AJ, Mccarthy NM, Wimalarathna HL, Colles FM, Clark L et al. A longitudinal 6-year study of the molecular epidemiology of clinical Campylobacter isolates in Oxfordshire, United kingdom. J Clin Microbiol 2012; 50:3193–3201 [View Article][PubMed]
    [Google Scholar]
  23. Wheeler NE, Barquist L, Kingsley RA, Gardner PP. A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes. Bioinformatics 2016; 32:btw518–3574 [View Article][PubMed]
    [Google Scholar]
  24. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595 [View Article][PubMed]
    [Google Scholar]
  25. Farhat MR, Shapiro BJ, Sheppard SK, Colijn C, Murray M. A phylogeny-based sampling strategy and power calculator informs genome-wide associations study design for microbial pathogens. Genome Med 2014; 6:101 [View Article][PubMed]
    [Google Scholar]
  26. Bolwell CF, Gilpin BJ, Campbell D, French NP. Evaluation of the representativeness of a sentinel surveillance site for campylobacteriosis. Epidemiol Infect 2015; 143:1990–2002 [View Article][PubMed]
    [Google Scholar]
  27. Cox MP, Peterson DA, Biggs PJ. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 2010; 11:485 [View Article][PubMed]
    [Google Scholar]
  28. Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010 http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  29. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article][PubMed]
    [Google Scholar]
  30. Aronesty E. ea-utils: Command-line tools for processing biological sequencing data. Expression Analysis, Durham, NC
    [Google Scholar]
  31. Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies. Curr Protoc Bioinformatics 2010; Chapter 11:11–15 [View Article][PubMed]
    [Google Scholar]
  32. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article][PubMed]
    [Google Scholar]
  33. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011; 27:578–579 [View Article][PubMed]
    [Google Scholar]
  34. Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol 2012; 13:R56 [View Article][PubMed]
    [Google Scholar]
  35. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  36. Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 2012; 40:D130–D135 [View Article][PubMed]
    [Google Scholar]
  37. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article][PubMed]
    [Google Scholar]
  38. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 2006; 23:254–267 [View Article][PubMed]
    [Google Scholar]
  39. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132 [View Article][PubMed]
    [Google Scholar]
  40. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293 [View Article][PubMed]
    [Google Scholar]
  41. Liaw A, Wiener M. Classification and regression by randomForest. R news 2002; 2:18–22
    [Google Scholar]
  42. Breiman L. Random forests. Mach Learn 2001; 45:5–32 [View Article]
    [Google Scholar]
  43. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 2003; 43:1947–1958 [View Article][PubMed]
    [Google Scholar]
  44. Goldstein BA, Hubbard AE, Cutler A, Barcellos LF. An application of random forests to a genome-wide association dataset: methodological considerations & new findings. BMC Genet 2010; 11:49 [View Article][PubMed]
    [Google Scholar]
  45. Touw WG, Bayjanov JR, Overmars L, Backus L, Boekhorst J et al. Data mining in the life sciences with random forest: a walk in the park or lost in the jungle?. Brief Bioinform 2013; 14:315–326 [View Article][PubMed]
    [Google Scholar]
  46. Wheeler NE, Gardner PP, Barquist L. Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica. PLoS Genet 2018; 14:e1007333 [View Article][PubMed]
    [Google Scholar]
  47. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and Regression Trees Chapman and Hall/CRC; 1984
    [Google Scholar]
  48. Huynh-Thu VA, Wehenkel L, Geurts P. Exploiting tree-based variable importances to selectively identify relevant variables. FSDM 200860–73
    [Google Scholar]
  49. Eddy SR. Profile hidden Markov models. Bioinformatics 1998; 14:755–763 [View Article][PubMed]
    [Google Scholar]
  50. Vickerman MM, Mather NM, Minick PE, Edwards CA. Initial characterization of the Streptococcus gordonii htpX gene. Oral Microbiol Immunol 2002; 17:22–31 [View Article][PubMed]
    [Google Scholar]
  51. Reid AN, Pandey R, Palyada K, Naikare H, Stintzi A. Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl Environ Microbiol 2008; 74:1583–1597 [View Article][PubMed]
    [Google Scholar]
  52. Doerrler WT, Gibbons HS, Raetz CR. MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 2004; 279:45102–45109 [View Article][PubMed]
    [Google Scholar]
  53. Morris FC. The role of outer membrane homeostasis in the virulence of Gram-negative bacteria. D_ph; University of Birmingham; 2014 http://etheses.bham.ac.uk/4966/ Accessed 14 August 2018
  54. Tefsen B, Bos MP, Beckers F, Tommassen J, de Cock H. MsbA is not required for phospholipid transport in Neisseria meningitidis. J Biol Chem 2005; 280:35961–35966 [View Article][PubMed]
    [Google Scholar]
  55. Bernatchez S, Szymanski CM, Ishiyama N, Li J, Jarrell HC et al. A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J Biol Chem 2005; 280:4792–4802 [View Article][PubMed]
    [Google Scholar]
  56. Fry BN, Feng S, Chen YY, Newell DG, Coloe PJ et al. The galE gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. Infect Immun 2000; 68:2594–2601 [View Article][PubMed]
    [Google Scholar]
  57. Maue AC, Mohawk KL, Giles DK, Poly F, Ewing CP et al. The polysaccharide capsule of Campylobacter jejuni modulates the host immune response. Infect Immun 2013; 81:665–672 [View Article][PubMed]
    [Google Scholar]
  58. Woodall CA, Jones MA, Barrow PA, Hinds J, Marsden GL et al. Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect Immun 2005; 73:5278–5285 [View Article][PubMed]
    [Google Scholar]
  59. Cameron A, Frirdich E, Huynh S, Parker CT, Gaynor EC. Hyperosmotic stress response of Campylobacter jejuni. J Bacteriol 2012; 194:6116–6130 [View Article][PubMed]
    [Google Scholar]
  60. Pittman MS, Elvers KT, Lee L, Jones MA, Poole RK et al. Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol Microbiol 2007; 63:575–590 [View Article][PubMed]
    [Google Scholar]
  61. Enocksson A, Lundberg J, Weitzberg E, Norrby-Teglund A, Svenungsson B. Rectal nitric oxide gas and stool cytokine levels during the course of infectious gastroenteritis. Clin Diagn Lab Immunol 2004; 11:250–254 [View Article][PubMed]
    [Google Scholar]
  62. Weingarten RA, Grimes JL, Olson JW. Role of Campylobacter jejuni respiratory oxidases and reductases in host colonization. Appl Environ Microbiol 2008; 74:1367–1375 [View Article][PubMed]
    [Google Scholar]
  63. Lockwood CW, Clarke TA, Butt JN, Hemmings AM, Richardson DJ. Characterization of the active site and calcium binding in cytochrome c nitrite reductases. Biochem Soc Trans 2011; 39:1871–1875 [View Article][PubMed]
    [Google Scholar]
  64. Stahl M, Butcher J, Stintzi A. Nutrient acquisition and metabolism by Campylobacter jejuni. Front Cell Infect Microbiol 2012; 2:5 [View Article][PubMed]
    [Google Scholar]
  65. Garénaux A, Guillou S, Ermel G, Wren B, Federighi M et al. Role of the Cj1371 periplasmic protein and the Cj0355c two-component regulator in the Campylobacter jejuni NCTC 11168 response to oxidative stress caused by paraquat. Res Microbiol 2008; 159:718–726 [View Article][PubMed]
    [Google Scholar]
  66. Wai SN, Nakayama K, Umene K, Moriya T, Amako K. Construction of a ferritin-deficient mutant of Campylobacter jejuni: contribution of ferritin to iron storage and protection against oxidative stress. Mol Microbiol 1996; 20:1127–1134 [View Article][PubMed]
    [Google Scholar]
  67. Errington J. Bacterial morphogenesis and the enigmatic MreB helix. Nat Rev Microbiol 2015; 13:241–248 [View Article][PubMed]
    [Google Scholar]
  68. Rodrigues RC, Pocheron AL, Hernould M, Haddad N, Tresse O et al. Description of Campylobacter jejuni Bf, an atypical aero-tolerant strain. Gut Pathog 2015; 7:30 [View Article][PubMed]
    [Google Scholar]
  69. Schirner K, Errington J. Influence of heterologous MreB proteins on cell morphology of Bacillus subtilis. Microbiology 2009; 155:3611–3621 [View Article][PubMed]
    [Google Scholar]
  70. Dye NA, Pincus Z, Fisher IC, Shapiro L, Theriot JA. Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter. Mol Microbiol 2011; 81:368–394 [View Article][PubMed]
    [Google Scholar]
  71. Reimold C, Defeu Soufo HJ, Dempwolff F, Graumann PL. Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology. Mol Biol Cell 2013; 24:2340–2349 [View Article][PubMed]
    [Google Scholar]
  72. Bendezú FO, de Boer PA. Conditional lethality, division defects, membrane involution, and endocytosis in mre and mrd shape mutants of Escherichia coli. J Bacteriol 2008; 190:1792–1811 [View Article][PubMed]
    [Google Scholar]
  73. Tu QV, Mcguckin MA, Mendz GL. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J Med Microbiol 2008; 57:795–802 [View Article][PubMed]
    [Google Scholar]
  74. Tenaillon O, Rodríguez-Verdugo A, Gaut RL, Mcdonald P, Bennett AF et al. The molecular diversity of adaptive convergence. Science 2012; 335:457–461 [View Article][PubMed]
    [Google Scholar]
  75. Deatherage DE, Traverse CC, Wolf LN, Barrick JE. Detecting rare structural variation in evolving microbial populations from new sequence junctions using breseq. Front Genet 2014; 5:468 [View Article][PubMed]
    [Google Scholar]
  76. Cowles KN, Gitai Z. Surface association and the MreB cytoskeleton regulate pilus production, localization and function in Pseudomonas aeruginosa. Mol Microbiol 2010; 76:1411–1426 [View Article][PubMed]
    [Google Scholar]
  77. Mauriello EM, Mouhamar F, Nan B, Ducret A, Dai D et al. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. Embo J 2010; 29:315–326 [View Article][PubMed]
    [Google Scholar]
  78. Doble AC, Bulmer DM, Kharraz L, Karavolos MH, Khan CMA. The function of the bacterial cytoskeleton in Salmonella pathogenesis. Virulence 2012; 3:446–449 [View Article]
    [Google Scholar]
  79. Frirdich E, Biboy J, Adams C, Lee J, Ellermeier J et al. Peptidoglycan-modifying enzyme Pgp1 is required for helical cell shape and pathogenicity traits in Campylobacter jejuni. PLoS Pathog 2012; 8:e1002602 [View Article][PubMed]
    [Google Scholar]
  80. Esson D, Mather AE, Scanlan E, Gupta S, de Vries SP et al. Genomic variations leading to alterations in cell morphology of Campylobacter spp. Sci Rep 2016; 6:38303 [View Article][PubMed]
    [Google Scholar]
  81. Stahl M, Frirdich E, Vermeulen J, Badayeva Y, Li X et al. The helical shape of Campylobacter jejuni promotes in vivo pathogenesis by aiding transit through intestinal mucus and colonization of crypts. Infect Immun 2016; 84:3399–3407 [View Article][PubMed]
    [Google Scholar]
  82. Esson D, Gupta S, Bailey D, Wigley P, Wedley A et al. Identification and initial characterisation of a protein involved in Campylobacter jejuni cell shape. Microb Pathog 2017; 104:202–211 [View Article][PubMed]
    [Google Scholar]
  83. Hyytiäinen H, Juntunen P, Scott T, Kytömäki L, Venho R et al. Effect of ciprofloxacin exposure on DNA repair mechanisms in Campylobacter jejuni. Microbiology 2013; 159:2513–2523 [View Article][PubMed]
    [Google Scholar]
  84. Wu Z, Sahin O, Shen Z, Liu P, Miller WG et al. Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni. Genome Biol Evol 2013; 5:2217–2230 [View Article][PubMed]
    [Google Scholar]
  85. Kreuder AJ. Investigation of the gallbladder host environment and small RNAs in the pathobiology of Campylobacter jejuni sheep abortion clone IA 3902 Iowa State University; 2016 https://lib.dr.iastate.edu/etd/14982/ Accessed 14 August 2018
  86. Collins C, Didelot X. A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination. PLoS Comput Biol 2018; 14:e1005958 [View Article][PubMed]
    [Google Scholar]
  87. Donkor ES, Stabler RA, Hinds J, Adegbola RA, Antonio M et al. Comparative phylogenomics of Streptococcus pneumoniae isolated from invasive disease and nasopharyngeal carriage from West Africans. BMC Genomics 2012; 13:569 [View Article][PubMed]
    [Google Scholar]
  88. Shea PR, Beres SB, Flores AR, Ewbank AL, Gonzalez-Lugo JH et al. Distinct signatures of diversifying selection revealed by genome analysis of respiratory tract and invasive bacterial populations. Proc Natl Acad Sci USA 2011; 108:5039–5044 [View Article][PubMed]
    [Google Scholar]
  89. Yahara K, Méric G, Taylor AJ, de Vries SP, Murray S et al. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ Microbiol 2017; 19:361–380 [View Article][PubMed]
    [Google Scholar]
  90. Méric G, Mcnally A, Pessia A, Mourkas E, Pascoe B et al. Convergent amino acid signatures in polyphyletic Campylobacter jejuni subpopulations suggest human niche tropism. Genome Biol Evol 2018; 10:763–774 [View Article][PubMed]
    [Google Scholar]
  91. Ferrero RL, Lee A. Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod-shaped bacteria. Microbiology 1988; 134:53–59 [View Article]
    [Google Scholar]
  92. Frirdich E, Vermeulen J, Biboy J, Soares F, Taveirne ME et al. Peptidoglycan ld-carboxypeptidase Pgp2 influences Campylobacter jejuni helical cell shape and pathogenic properties and provides the substrate for the dl-carboxypeptidase Pgp1. J Biol Chem 2014; 289:8007–8018 [View Article][PubMed]
    [Google Scholar]
  93. Lertsethtakarn P, Ottemann KM, Hendrixson DR. Motility and chemotaxis in Campylobacter and Helicobacter. Annu Rev Microbiol 2011; 65:389–410 [View Article][PubMed]
    [Google Scholar]
  94. Ziprin RL, Hume ME, Andrews K, Droleskey RE, Harvey RB et al. News and notes: an atypical Campylobacter coli exhibiting unusual morphology. Curr Microbiol 2005; 51:161–163 [View Article][PubMed]
    [Google Scholar]
  95. Hänel I, Borrmann E, Müller J, Müller W, Pauly B et al. Genomic and phenotypic changes of Campylobacter jejuni strains after passage of the chicken gut. Vet Microbiol 2009; 136:121–129 [View Article][PubMed]
    [Google Scholar]
  96. Field LH, Underwood JL, Payne SM, Berry LJ. Characteristics of an avirulent Campylobacter jejuni strain and its virulence-enhanced variants. J Med Microbiol 1993; 38:293–300 [View Article][PubMed]
    [Google Scholar]
  97. Tangwatcharin P, Chanthachum S, Khopaibool P, Griffiths MW. Morphological and physiological responses of Campylobacter jejuni to stress. J Food Prot 2006; 69:2747–2753 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000251
Loading
/content/journal/mgen/10.1099/mgen.0.000251
Loading

Data & Media loading...

Supplements

Supplementary data

PDF

Supplementary data

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error