1887

Abstract

Phenotypic change is a hallmark of bacterial adaptation during chronic infection. In the case of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis, well-characterized phenotypic variants include mucoid and small colony variants (SCVs). It has previously been shown that SCVs can be reproducibly isolated from the murine lung following the establishment of chronic infection with mucoid P. aeruginosa strain NH57388A. Using a combination of single-molecule real-time (PacBio) and Illumina sequencing we identify a large genomic inversion in the SCV through recombination between homologous regions of two rRNA operons and an associated truncation of one of the 16S rRNA genes and suggest this may be the genetic switch for conversion to the SCV phenotype. This phenotypic conversion is associated with large-scale transcriptional changes distributed throughout the genome. This global rewiring of the cellular transcriptomic output results in changes to normally differentially regulated genes that modulate resistance to oxidative stress, central metabolism and virulence. These changes are of clinical relevance because the appearance of SCVs during chronic infection is associated with declining lung function.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000262
2019-03-28
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/4/mgen000262.html?itemId=/content/journal/mgen/10.1099/mgen.0.000262&mimeType=html&fmt=ahah

References

  1. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P et al. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 2006; 4:295–305 [View Article][PubMed]
    [Google Scholar]
  2. Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance and the oxidative stress response. Virulence 2013; 4:273–283 [View Article][PubMed]
    [Google Scholar]
  3. Déziel E, Comeau Y, Villemur R. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 2001; 183:1195–1204 [View Article][PubMed]
    [Google Scholar]
  4. Mirani ZA, Aziz M, Khan SI. Small colony variants have a major role in stability and persistence of Staphylococcus aureus biofilms. J Antibiot 2015; 68:98–105 [View Article][PubMed]
    [Google Scholar]
  5. Brouillette E, Martinez A, Boyll BJ, Allen NE, Malouin F. Persistence of a Staphylococcus aureus small-colony variant under antibiotic pressure in vivo. FEMS Immunol Med Microbiol 2004; 41:35–41 [View Article][PubMed]
    [Google Scholar]
  6. Maduka-Ezeh AN, Greenwood-Quaintance KE, Karau MJ, Berbari EF, Osmon DR et al. Antimicrobial susceptibility and biofilm formation of Staphylococcus epidermidis small colony variants associated with prosthetic joint infection. Diagn Microbiol Infect Dis 2012; 74:224–229 [View Article][PubMed]
    [Google Scholar]
  7. Allegrucci M, Sauer K. Formation of Streptococcus pneumoniae non-phase-variable colony variants is due to increased mutation frequency present under biofilm growth conditions. J Bacteriol 2008; 190:6330–6339 [View Article][PubMed]
    [Google Scholar]
  8. Zbinden A, Quiblier C, Hernandez D, Herzog K, Bodler P et al. Characterization of Streptococcus tigurinus small-colony variants causing prosthetic joint infection by comparative whole-genome analyses. J Clin Microbiol 2014; 52:467–474 [View Article][PubMed]
    [Google Scholar]
  9. Wellinghausen N, Chatterjee I, Berger A, Niederfuehr A, Proctor RA et al. Characterization of clinical Enterococcus faecalis small-colony variants. J Clin Microbiol 2009; 47:2802–2811 [View Article][PubMed]
    [Google Scholar]
  10. Rea R, Hill C, Gahan CG. Listeria monocytogenes PerR mutants display a small-colony phenotype, increased sensitivity to hydrogen peroxide, and significantly reduced murine virulence. Appl Environ Microbiol 2005; 71:8314–8322 [View Article][PubMed]
    [Google Scholar]
  11. Pinto-de-Oliveira A, Coutinho CP, Ramos CG, Sousa SA, de Carvalho CCCR et al. 109 the Burkholderia cepacia small colony variants (SCV) are a more pathogenic bacterial form that may facilitate persistent respiratory infections in CF patients. J Cyst Fibros 2013; 12:S76 [View Article]
    [Google Scholar]
  12. Cano DA, Pucciarelli MG, Martínez-Moya M, Casadesús J, García-del Portillo F. Selection of small-colony variants of Salmonella enterica serovar typhimurium in nonphagocytic eucaryotic cells. Infect Immun 2003; 71:3690–3698 [View Article][PubMed]
    [Google Scholar]
  13. Jacob J, Hort GM, Overhoff P, Mielke ME. In vitro and in vivo characterization of smooth small colony variants of Brucella abortus S19. Microbes Infect 2006; 8:363–371 [View Article][PubMed]
    [Google Scholar]
  14. Morton HE, Shoemaker J. The identification of neisseria gonorrhoeae by means of bacterial variation and the detection of small colony forms in clinical material. J Bacteriol 1945; 50:585–587[PubMed]
    [Google Scholar]
  15. Häussler S, Ziegler I, Löttel A, von Götz F, Rohde M et al. Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 2003; 52:295–301 [View Article][PubMed]
    [Google Scholar]
  16. Evans TJ. Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol 2015; 10:231–239 [View Article][PubMed]
    [Google Scholar]
  17. O'Sullivan BP, Freedman SD. Cystic fibrosis. Lancet 2009; 373:1891–1904 [View Article][PubMed]
    [Google Scholar]
  18. Li Z, Kosorok MR, Farrell PM, Laxova A, West SE et al. Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA 2005; 293:581 [View Article][PubMed]
    [Google Scholar]
  19. Emerson J, Rosenfeld M, McNamara S, Ramsey B, Gibson RL. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 2002; 34:91–100 [View Article][PubMed]
    [Google Scholar]
  20. Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 2012; 10:841–851 [View Article][PubMed]
    [Google Scholar]
  21. CF Registry Annual Data Reports - Cystic Fibrosis Trust
    [Google Scholar]
  22. Webb JS, Lau M, Kjelleberg S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 2004; 186:8066–8073 [View Article][PubMed]
    [Google Scholar]
  23. Häussler S. Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa. Environ Microbiol 2004; 6:546–551 [View Article][PubMed]
    [Google Scholar]
  24. Starkey M, Hickman JH, Ma L, Zhang N, de Long S et al. Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 2009; 191:3492–3503 [View Article][PubMed]
    [Google Scholar]
  25. Wang D, Dorosky RJ, Han CS, Lo CC, Dichosa AE et al. Adaptation genomics of a small-colony variant in a Pseudomonas chlororaphis 30-84 biofilm. Appl Environ Microbiol 2015; 81:890–899 [View Article][PubMed]
    [Google Scholar]
  26. Malone JG, Jaeger T, Spangler C, Ritz D, Spang A et al. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 2010; 6:e1000804 [View Article][PubMed]
    [Google Scholar]
  27. Blanka A, Düvel J, Dötsch A, Klinkert B, Abraham WR et al. Constitutive production of c-di-GMP is associated with mutations in a variant of Pseudomonas aeruginosa with altered membrane composition. Sci Signal 2015; 8:ra36 [View Article][PubMed]
    [Google Scholar]
  28. Wolter DJ, Emerson JC, McNamara S, Buccat AM, Qin X et al. Staphylococcus aureus small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin Infect Dis 2013; 57:384–391 [View Article][PubMed]
    [Google Scholar]
  29. von Götz F, Häussler S, Jordan D, Saravanamuthu SS, Wehmhöner D et al. Expression analysis of a highly adherent and cytotoxic small colony variant of Pseudomonas aeruginosa isolated from a lung of a patient with cystic fibrosis. J Bacteriol 2004; 186:3837–3847 [View Article][PubMed]
    [Google Scholar]
  30. Besier S, Smaczny C, von Mallinckrodt C, Krahl A, Ackermann H et al. Prevalence and clinical significance of Staphylococcus aureus small-colony variants in cystic fibrosis lung disease. J Clin Microbiol 2007; 45:168–172 [View Article][PubMed]
    [Google Scholar]
  31. Kahl B, Herrmann M, Everding AS, Koch HG, Becker K et al. Persistent infection with small colony variant strains of Staphylococcus aureus in patients with cystic fibrosis. J Infect Dis 1998; 177:1023–1029 [View Article][PubMed]
    [Google Scholar]
  32. Deretic V, Govan JR, Konyecsni WM, Martin DW. Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli. Mol Microbiol 1990; 4:189–196 [View Article][PubMed]
    [Google Scholar]
  33. Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 2005; 102:14422–14427 [View Article][PubMed]
    [Google Scholar]
  34. D'Argenio DA, Calfee MW, Rainey PB, Pesci EC. Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 2002; 184:6481–6489 [View Article][PubMed]
    [Google Scholar]
  35. Cui L, Neoh HM, Iwamoto A, Hiramatsu K. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria. Proc Natl Acad Sci USA 2012; 109:E1647E1656 [View Article][PubMed]
    [Google Scholar]
  36. Painter KL, Strange E, Parkhill J, Bamford KB, Armstrong-James D et al. Staphylococcus aureus adapts to oxidative stress by producing H2O2-resistant small-colony variants via the SOS response. Infect Immun 2015; 83:1830–1844 [View Article][PubMed]
    [Google Scholar]
  37. Bayes HK, Ritchie N, Irvine S, Evans TJ. A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection. Sci Rep 2016; 6:35838 [View Article][PubMed]
    [Google Scholar]
  38. Hoffmann N, Rasmussen TB, Jensen , Stub C, Hentzer M et al. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun 2005; 73:2504–2514 [View Article][PubMed]
    [Google Scholar]
  39. Boucher JC, Yu H, Mudd MH, Deretic V. Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 1997; 65:3838–3846[PubMed]
    [Google Scholar]
  40. Eckweiler D, Bunk B, Spröer C, Overmann J, Häussler S. Complete genome sequence of highly adherent Pseudomonas aeruginosa small-colony variant SCV20265. Genome Announc 2014; 2:e0123213 [View Article][PubMed]
    [Google Scholar]
  41. Lee JS, Heo YJ, Lee JK, Cho YH. KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect Immun 2005; 73:4399–4403 [View Article][PubMed]
    [Google Scholar]
  42. Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ. Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 2000; 182:4533–4544 [View Article][PubMed]
    [Google Scholar]
  43. Vinckx T, Matthijs S, Cornelis P. Loss of the oxidative stress regulator OxyR in Pseudomonas aeruginosa PAO1 impairs growth under iron-limited conditions. FEMS Microbiol Lett 2008; 288:258–265 [View Article][PubMed]
    [Google Scholar]
  44. Chung JS, Noguera-Mazon V, Lancelin JM, Kim SK, Hirasawa M et al. Interaction domain on thioredoxin for Pseudomonas aeruginosa 5'-adenylylsulfate reductase. J Biol Chem 2009; 284:31181–31189 [View Article][PubMed]
    [Google Scholar]
  45. Hishinuma S, Ohtsu I, Fujimura M, Fukumori F. OxyR is involved in the expression of thioredoxin reductase TrxB in Pseudomonas putida. FEMS Microbiol Lett 2008; 289:138–145 [View Article][PubMed]
    [Google Scholar]
  46. Tielker D, Hacker S, Loris R, Strathmann M, Wingender J et al. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 2005; 151:1313–1323 [View Article][PubMed]
    [Google Scholar]
  47. Frederiksen RF, Paspaliari DK, Larsen T, Storgaard BG, Larsen MH et al. Bacterial chitinases and chitin-binding proteins as virulence factors. Microbiology 2013; 159:833–847 [View Article][PubMed]
    [Google Scholar]
  48. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 2001; 183:6454–6465 [View Article][PubMed]
    [Google Scholar]
  49. Lau GW, Ran H, Kong F, Hassett DJ, Mavrodi D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 2004; 72:4275–4278 [View Article][PubMed]
    [Google Scholar]
  50. Pessi G, Williams F, Hindle Z, Heurlier K, Holden MT et al. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J Bacteriol 2001; 183:6676–6683 [View Article][PubMed]
    [Google Scholar]
  51. Sánchez P, Linares JF, Ruiz-Díez B, Campanario E, Navas A et al. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother 2002; 50:657–664 [View Article][PubMed]
    [Google Scholar]
  52. Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, Yuen GJ, Saghatelian A et al. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog 2013; 9:e1003101 [View Article][PubMed]
    [Google Scholar]
  53. Sabra W, Haddad AM, Zeng AP. Comparative physiological study of the wild type and the small colony variant of Pseudomonas aeruginosa 20265 under controlled growth conditions. World J Microbiol Biotechnol 2014; 30:1027–1036 [View Article][PubMed]
    [Google Scholar]
  54. Evans TJ. Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis. Future Microbiol 2015; 10:231–239 [View Article][PubMed]
    [Google Scholar]
  55. Bryant JA, Sellars LE, Busby SJ, Lee DJ. Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res 2014; 42:11383–11392 [View Article][PubMed]
    [Google Scholar]
  56. Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F et al. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol 2010; 192:1113–1121 [View Article][PubMed]
    [Google Scholar]
  57. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25:1754–1760 [View Article][PubMed]
    [Google Scholar]
  58. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012; 22:568–576 [View Article][PubMed]
    [Google Scholar]
  59. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  60. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 2009; 25:119–120 [View Article][PubMed]
    [Google Scholar]
  61. Lim YW, Schmieder R, Haynes M, Willner D, Furlan M et al. Metagenomics and metatranscriptomics: windows on CF-associated viral and microbial communities. J Cyst Fibros 2013; 12:154–164 [View Article][PubMed]
    [Google Scholar]
  62. Ramarao N, Nielsen-Leroux C, Lereclus D. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Vis Exp 2012e4392 [View Article][PubMed]
    [Google Scholar]
  63. Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E. Use of the Galleria mellonella caterpillar as a model host to study the role of the type iii secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 2003; 71:2404–2413 [View Article][PubMed]
    [Google Scholar]
  64. Jander G, Rahme LG, Ausubel FM. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 2000; 182:3843–3845 [View Article][PubMed]
    [Google Scholar]
  65. Hauser AR, Engel JN. Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect Immun 1999; 67:5530–5537
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000262
Loading
/content/journal/mgen/10.1099/mgen.0.000262
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Supplementary File 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error