1887

Abstract

Bacteria and archaea make up most of natural diversity, but the mechanisms that underlie the origin and maintenance of prokaryotic species are poorly understood. We investigated the speciation history of the genus , an ecologically diverse bacterial lineage, within which subsp. is responsible for important human food-borne infections. We performed a survey of diversity across a large reference collection using multilocus sequence typing, followed by genome sequencing of distinct lineages. We identified 11 distinct phylogroups, 3 of which were previously undescribed. Strains assigned to subsp. are polyphyletic, with two distinct lineages that we designate Salamae A and B. Strains of the subspecies are subdivided into two groups, Houtenae A and B, and are both related to Selander’s group VII. A phylogroup we designate VIII was previously unknown. A simple binary fission model of speciation cannot explain observed patterns of sequence diversity. In the recent past, there have been large-scale hybridization events involving an unsampled ancestral lineage and three distantly related lineages of the genus that have given rise to Houtenae A, Houtenae B and VII. We found no evidence for ongoing hybridization in the other eight lineages, but detected subtler signals of ancient recombination events. We are unable to fully resolve the speciation history of the genus, which might have involved additional speciation-by-hybridization or multi-way speciation events. Our results imply that traditional models of speciation by binary fission and divergence are not sufficient to account for evolution.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000284
2019-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/5/8/mgen000284.html?itemId=/content/journal/mgen/10.1099/mgen.0.000284&mimeType=html&fmt=ahah

References

  1. Hugenholtz P, Skarshewski A, Parks DH. Genome-based microbial taxonomy coming of age. Cold Spring Harb Perspect Biol 2016; 8:a018085 [View Article]
    [Google Scholar]
  2. Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of archaea: new perspectives on their diversity, evolution and ecology. ISME J 2017; 11:2407–2425 [View Article]
    [Google Scholar]
  3. Brown EW, Mammel MK, LeClerc JE, Cebula TA. Limited boundaries for extensive horizontal gene transfer among Salmonella pathogens. Proc Natl Acad Sci USA 2003; 100:15676–15681 [View Article]
    [Google Scholar]
  4. Octavia S, Lan R. Frequent recombination and low level of clonality within Salmonella enterica subspecies I. Microbiology 2006; 152:1099–1108 [View Article]
    [Google Scholar]
  5. Falush D, Torpdahl M, Didelot X, Conrad DF, Wilson DJ et al. Mismatch induced speciation in Salmonella: model and data. Philos Trans R Soc Lond B Biol Sci 2006; 361:2045–2053 [View Article]
    [Google Scholar]
  6. Sangal V, Harbottle H, Mazzoni CJ, Helmuth R, Guerra B et al. Evolution and population structure of Salmonella enterica serovar Newport. J Bacteriol 2010; 192:6465–6476 [View Article]
    [Google Scholar]
  7. Didelot X, Bowden R, Street T, Golubchik T, Spencer C et al. Recombination and population structure in Salmonella enterica . PLoS Genet 2011; 7:e1002191 [View Article]
    [Google Scholar]
  8. Achtman M, Wain J, Weill F-X, Nair S, Zhou Z et al. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica . PLoS Pathog 2012; 8:e1002776 [View Article]
    [Google Scholar]
  9. Desai PT, Porwollik S, Long F, Cheng P, Wollam A et al. Evolutionary genomics of Salmonella enterica subspecies. MBio 2013; 4: [View Article]
    [Google Scholar]
  10. Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. Nat Rev Genet 2018; 19:549–565 [View Article]
    [Google Scholar]
  11. Smith JM, Smith NH, O'Rourke M, Spratt BG. How clonal are bacteria?. Proc Natl Acad Sci USA 1993; 90:4384–4388 [View Article]
    [Google Scholar]
  12. Yang C, Cui Y, Didelot X, Yang R, Falush D. Why panmictic bacteria are rare. bioRxiv 2018; 385336:
    [Google Scholar]
  13. Zahrt TC, Maloy S. Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi . Proc Natl Acad Sci USA 1997; 94:9786–9791 [View Article]
    [Google Scholar]
  14. Vulić M, Dionisio F, Taddei F, Radman M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci USA 1997; 94:9763–9767 [View Article]
    [Google Scholar]
  15. Hanage WP, Fraser C, Spratt BG. The impact of homologous recombination on the generation of diversity in bacteria. J Theor Biol 2006; 239:210–219 [View Article]
    [Google Scholar]
  16. Chen L, Mathema B, Pitout JDD, DeLeo FR, Kreiswirth BN. Epidemic Klebsiella pneumoniae ST258 is a hybrid strain. MBio 2014; 5:e01355–01314 [View Article]
    [Google Scholar]
  17. Didelot X, Achtman M, Parkhill J, Thomson NR, Falush D. A bimodal pattern of relatedness between the Salmonella paratyphi A and typhi genomes: convergence or divergence by homologous recombination?. Genome Res 2007; 17:61–68 [View Article]
    [Google Scholar]
  18. Felten A, Vila Nova M, Durimel K, Guillier L, Mistou M-Y et al. First gene-ontology enrichment analysis based on bacterial coregenome variants: insights into adaptations of Salmonella serovars to mammalian- and avian-hosts. BMC Microbiol 2017; 17:222 [View Article]
    [Google Scholar]
  19. Sheppard SK, McCarthy ND, Falush D, Maiden MCJ. Convergence of campylobacter species: implications for bacterial evolution. Science 2008; 320:237–239 [View Article]
    [Google Scholar]
  20. Sheppard SK, Didelot X, Jolley KA, Darling AE, Pascoe B et al. Progressive genome-wide introgression in agricultural Campylobacter coli . Mol Ecol 2013; 22:1051–1064 [View Article]
    [Google Scholar]
  21. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol 2000; 38:2465–2467
    [Google Scholar]
  22. Tindall BJ, Grimont PAD, Garrity GM, Euzéby JP. Nomenclature and taxonomy of the genus Salmonella . Int J Syst Evol Microbiol 2005; 55:521–524 [View Article]
    [Google Scholar]
  23. Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ. Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol 1989; 27:313–320
    [Google Scholar]
  24. Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. Typhoid fever. N Engl J Med 2002; 347:1770–1782 [View Article]
    [Google Scholar]
  25. Sánchez-Vargas FM, Abu-El-Haija MA, Gómez-Duarte OG. Salmonella infections: an update on epidemiology, management, and prevention. Travel Med Infect Dis 2011; 9:263–277 [View Article]
    [Google Scholar]
  26. Lamas A, Miranda JM, Regal P, Vázquez B, Franco CM et al. A comprehensive review of non-enterica subspecies of Salmonella enterica . Microbiol Res 2018; 206:60–73 [View Article]
    [Google Scholar]
  27. Selander R, Beltran P, Smith N. Evolutionary genetics of Salmonella . In Selander RK, Clark AG, Whittam TS. (editors) Evolution at the Molecular Level 1991 pp 25–57
    [Google Scholar]
  28. Nelson K, Selander RK. Evolutionary genetics of the proline permease gene (putP) and the control region of the proline utilization operon in populations of Salmonella and Escherichia coli . J Bacteriol 1992; 174:6886–6895 [View Article]
    [Google Scholar]
  29. Boyd EF, Wang FS, Whittam TS, Selander RK. Molecular genetic relationships of the salmonellae. Appl Environ Microbiol 1996; 62:804–808
    [Google Scholar]
  30. Guibourdenche M, Roggentin P, Mikoleit M, Fields PI, Bockemühl J et al. Supplement 2003-2007 (NO. 47) to the White-Kauffmann-Le minor scheme. Res Microbiol 2010; 161:26–29 [View Article]
    [Google Scholar]
  31. Shelobolina ES, Sullivan SA, O'Neill KR, Nevin KP, Lovley DR. Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant Bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov. Appl Environ Microbiol 2004; 70:2959–2965 [View Article]
    [Google Scholar]
  32. Nelson K, Whittam TS, Selander RK. Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli . Proc Natl Acad Sci U S A 1991; 88:6667–6671 [View Article]
    [Google Scholar]
  33. Thampapillai G, Lan R, Reeves PR. Molecular evolution in the gnd locus of Salmonella enterica . Mol Biol Evol 1994; 11:813–828 [View Article]
    [Google Scholar]
  34. Christensen H, Nordentoft S, Olsen JE. Phylogenetic relationships of Salmonella based on rRNA sequences. Int J Syst Bacteriol 1998; 48 Pt 2:605–610 [View Article]
    [Google Scholar]
  35. Brown EW, Kotewicz ML, Cebula TA. Detection of recombination among Salmonella enterica strains using the incongruence length difference test. Mol Phylogenet Evol 2002; 24:102–120 [View Article]
    [Google Scholar]
  36. Whittam TS, Bumbaugh AC. Inferences from whole-genome sequences of bacterial pathogens. Curr Opin Genet Dev 2002; 12:719–725 [View Article]
    [Google Scholar]
  37. Porwollik S, Wong RM-Y, McClelland M. Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc Natl Acad Sci USA 2002; 99:8956–8961 [View Article]
    [Google Scholar]
  38. McQuiston JR, Herrera-Leon S, Wertheim BC, Doyle J, Fields PI et al. Molecular phylogeny of the salmonellae: relationships among Salmonella species and subspecies determined from four housekeeping genes and evidence of lateral gene transfer events. J Bacteriol 2008; 190:7060–7067 [View Article]
    [Google Scholar]
  39. Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C et al. Salmonella bongori provides insights into the evolution of the salmonellae. PLoS Pathog 2011; 7:e1002191 [View Article]
    [Google Scholar]
  40. Trujillo S, Keys CE, Brown EW. Evaluation of the taxonomic utility of six-enzyme pulsed-field gel electrophoresis in reconstructing Salmonella subspecies phylogeny. Infect Genet Evol 2011; 11:92–102 [View Article]
    [Google Scholar]
  41. Pettengill JB, Timme RE, Barrangou R, Toro M, Allard MW et al. The evolutionary history and diagnostic utility of the CRISPR-Cas system within Salmonella enterica ssp. enterica . PeerJ 2014; 2:e340 [View Article]
    [Google Scholar]
  42. Kisiela DI, Chattopadhyay S, Libby SJ, Karlinsey JE, Fang FC et al. Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin. PLoS Pathog 2012; 8:e1002733 [View Article]
    [Google Scholar]
  43. Kidgell C, Reichard U, Wain J, Linz B, Torpdahl M et al. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol 2002; 2:39–45 [View Article]
    [Google Scholar]
  44. Criscuolo A, Gascuel O. Fast NJ-like algorithms to deal with incomplete distance matrices. BMC Bioinformatics 2008; 9:166 [View Article]
    [Google Scholar]
  45. Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 1979; 76:5269–5273 [View Article]
    [Google Scholar]
  46. Librado P, Rozas J. DnaSP V5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25:1451–1452 [View Article]
    [Google Scholar]
  47. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P et al. Complete genome sequence of Salmonella enterica serovar typhimurium LT2. Nature 2001; 413:852–856 [View Article]
    [Google Scholar]
  48. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped blast and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article]
    [Google Scholar]
  49. Do CB, Mahabhashyam MSP, Brudno M, Batzoglou S. ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Res 2005; 15:330–340 [View Article]
    [Google Scholar]
  50. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article]
    [Google Scholar]
  51. Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet 2012; 8:e1002453 [View Article]
    [Google Scholar]
  52. Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 2012; 8:e1002967 [View Article]
    [Google Scholar]
  53. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015; 31:3691–3693 [View Article]
    [Google Scholar]
  54. Wei T, Simko V. 2017; R package “corrplot”: visualization of a correlation matrix (Version 0.84) [Internet]. Available from https://github.com/taiyun/corrplot
    [Google Scholar]
  55. Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella . PLoS Genet 2018; 14:e1007261 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000284
Loading
/content/journal/mgen/10.1099/mgen.0.000284
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error