1887

Abstract

Cycads are known to host symbiotic cyanobacteria, including species, as well as other sympatric bacterial taxa within their specialized coralloid roots. Yet, it is unknown if these bacteria share a phylogenetic origin and/or common genomic functions that allow them to engage in facultative symbiosis with cycad roots. To address this, we obtained metagenomic sequences from 39 coralloid roots sampled from diverse cycad species and origins in Australia and Mexico. Culture-independent shotgun metagenomic sequencing was used to validate sub-community co-cultures as an efficient approach for functional and taxonomic analysis. Our metanalysis shows a host-independent microbiome core consisting of seven bacterial orders with high species diversity within the identified taxa. Moreover, we recovered 43 cyanobacterial metagenome-assembled genomes, and in addition to spp., symbiotic cyanobacteria of the genus were identified for the first time. Using this robust dataset, we used phylometagenomic analysis to reveal three monophyletic cyanobiont clades, two host-generalist and one cycad-specific that includes spp. Although the symbiotic clades have independently arisen, they are enriched in certain functional genes, such as those related to secondary metabolism. Furthermore, the taxonomic composition of associated sympatric bacterial taxa remained constant. Our research quadruples the number of cycad cyanobiont genomes and provides a robust framework to decipher cyanobacterial symbioses, with the potential of improving our understanding of symbiotic communities. This study lays a solid foundation to harness cyanobionts for agriculture and bioprospection, and assist in conservation of critically endangered cycads.

Funding
This study was supported by the:
  • SEP-Cinvestav (MX) (Award 103)
    • Principle Award Recipient: AngelicaCibrian-Jaramillo
  • SEP-CINVESTAV (MX) (Award 103)
    • Principle Award Recipient: FranciscoBarona-Gomez
  • Joint Genome Institute (Award 506790)
    • Principle Award Recipient: PaulM D'Agostino
  • Royal Society (Award NAF280631)
    • Principle Award Recipient: FranciscoBarona-Gomez
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.001207
2024-03-07
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/mgen/10/3/mgen001207.html?itemId=/content/journal/mgen/10.1099/mgen.0.001207&mimeType=html&fmt=ahah

References

  1. Coiro M, Allio R, Mazet N, Seyfullah LJ, Condamine FL. Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity. New Phytol 2023; 240:1616–1635 [View Article] [PubMed]
    [Google Scholar]
  2. Baillie J, Hilton-Taylor C, Stuart SN. eds IUCN Red List of Threatened Species: A Global Species Assessment Iucn; 2004
    [Google Scholar]
  3. Chang ACG, Chen T, Li N, Duan J. Perspectives on endosymbiosis in coralloid roots: association of Cycads and Cyanobacteria. Front Microbiol 2019; 10:1888 [View Article] [PubMed]
    [Google Scholar]
  4. Grilli Caiola M. On the phycobionts of the cycad coralloid roots. New Phytol 1980; 85:537–544 [View Article]
    [Google Scholar]
  5. Gutiérrez-García K, Bustos-Díaz ED, Corona-Gómez JA, Ramos-Aboites HE, Sélem-Mojica N et al. Cycad coralloid roots contain bacterial communities including Cyanobacteria and Caulobacter spp. that encode Niche-specific biosynthetic gene clusters. Genome Biol Evol 2019; 11:319–334 [View Article] [PubMed]
    [Google Scholar]
  6. Suárez-Moo P de J, Vovides AP, Griffith MP, Barona-Gómez F, Cibrián-Jaramillo A. Unlocking a high bacterial diversity in the coralloid root microbiome from the cycad genus Dioon. PLoS One 2019; 14:e0211271 [View Article] [PubMed]
    [Google Scholar]
  7. Zheng Y, Chiang TY, Huang CL, Gong X. Highly diverse endophytes in roots of Cycas bifida (Cycadaceae), an ancient but endangered gymnosperm. J Microbiol 2018; 56:337–345 [View Article] [PubMed]
    [Google Scholar]
  8. Bell‐Doyon P, Laroche J, Saltonstall K, Villarreal Aguilar JC. Specialized bacteriome uncovered in the coralloid roots of the epiphytic gymnosperm, Zamia pseudoparasitica. Environmental DNA 2020; 2:418–428 [View Article]
    [Google Scholar]
  9. Lindblad P, Atkins CA, Pate JS. N(2)-fixation by freshly isolated Nostoc from coralloid roots of the cycad Macrozamia riedlei (Fisch. ex Gaud.) Gardn. Plant Physiol 1991; 95:753–759 [View Article] [PubMed]
    [Google Scholar]
  10. Pate JS, Lindblad P, Atkins CA. Pathways of assimilation and transfer of fixed nitrogen in coralloid roots of cycad-Nostoc symbioses. Planta 1988; 176:461–471 [View Article] [PubMed]
    [Google Scholar]
  11. Kipp MA, Stüeken EE, Gehringer MM, Sterelny K, Scott JK et al. Exploring cycad foliage as an archive of the isotopic composition of atmospheric nitrogen. Geobiology 2020; 18:152–166 [View Article] [PubMed]
    [Google Scholar]
  12. Liaimer A, Jensen JB, Dittmann E. A genetic and chemical perspective on symbiotic recruitment of Cyanobacteria of the genus Nostoc into the host plant Blasia pusilla L. Front Microbiol 2016; 7:1693 [View Article] [PubMed]
    [Google Scholar]
  13. Dehm D, Krumbholz J, Baunach M, Wiebach V, Hinrichs K et al. Unlocking the Spatial Control of Secondary Metabolism Uncovers Hidden Natural Product Diversity in Nostoc punctiforme. ACS chemical biology 2019; 14:1271–1279 [View Article] [PubMed]
    [Google Scholar]
  14. D’Agostino PM. Highlights of biosynthetic enzymes and natural products from symbiotic cyanobacteria. Nat Prod Rep 2023; 40:1701–1717 [View Article] [PubMed]
    [Google Scholar]
  15. Ow MC, Gantar M, Elhai J. Reconstitution of a cycad-cyanobacterial association. Symbiosis 1999
    [Google Scholar]
  16. Costa JL, Paulsrud P, Lindblad P. Cyanobiont diversity within coralloid roots of selected cycad species. FEMS Microbiol Ecol 1999; 28:85–91 [View Article]
    [Google Scholar]
  17. Gehringer MM, Pengelly JJL, Cuddy WS, Fieker C, Forster PI et al. Host selection of symbiotic cyanobacteria in 31 species of the Australian cycad genus: Macrozamia (Zamiaceae). Mol Plant Microbe Interact 2010; 23:811–822 [View Article] [PubMed]
    [Google Scholar]
  18. Thajuddin N, Muralitharan G, Sundaramoorthy M, Ramamoorthy R, Ramachandran S et al. Morphological and genetic diversity of symbiotic cyanobacteria from cycads. J Basic Microbiol 2010; 50:254–265 [View Article] [PubMed]
    [Google Scholar]
  19. Yamada S, Ohkubo S, Miyashita H, Setoguchi H. Genetic diversity of symbiotic cyanobacteria in Cycas revoluta (Cycadaceae). FEMS Microbiol Ecol 2012; 81:696–706 [View Article] [PubMed]
    [Google Scholar]
  20. Rasmussen U, Svenning MM. Characterization by genotypic methods of symbiotic Nostoc strains isolated from five species of Gunnera. Arch Microbiol 2001; 176:204–210 [View Article] [PubMed]
    [Google Scholar]
  21. Bouchard R, Peñaloza-Bojacá G, Toupin S, Guadalupe Y, Gudiño J et al. Contrasting bacteriome of the hornwort Leiosporoceros dussii in two nearby sites with emphasis on the hornwort-cyanobacterial symbiosis. Symbiosis 2020; 81:39–52 [View Article]
    [Google Scholar]
  22. O’Brien HE, Miadlikowska J, Lutzoni F. Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur J Phycol 2005; 40:363–378 [View Article]
    [Google Scholar]
  23. Svenning MM, Eriksson T, Rasmussen U. Phylogeny of symbiotic cyanobacteria within the genus Nostoc based on 16S rDNA sequence analyses. Arch Microbiol 2005; 183:19–26 [View Article] [PubMed]
    [Google Scholar]
  24. Gagunashvili AN, Andrésson ÓS. Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics 2018; 19:434 [View Article] [PubMed]
    [Google Scholar]
  25. Warshan D, Liaimer A, Pederson E, Kim S-Y, Shapiro N et al. Genomic changes associated with the evolutionary transitions of Nostoc to a plant symbiont. Mol Biol Evol 2018; 35:1160–1175 [View Article] [PubMed]
    [Google Scholar]
  26. Huo D, Li H, Cai F, Guo X, Qiao Z et al. Genome Evolution of Filamentous Cyanobacterium Nostoc Species: From Facultative Symbiosis to Free Living. Microorganisms 2021; 9:2015 [View Article] [PubMed]
    [Google Scholar]
  27. Pratte BS, Thiel T. Comparative genomic insights into culturable symbiotic cyanobacteria from the water fern Azolla. Microb Genom 2021; 7:000595 [View Article] [PubMed]
    [Google Scholar]
  28. de Vries S, de Vries J. Evolutionary genomic insights into cyanobacterial symbioses in plants. Quant Plant Bio 2022; 3:e16 [View Article]
    [Google Scholar]
  29. Cohen MF, Meeks JC. A hormogonium regulating locus, hrmUA, of the cyanobacterium Nostoc punctiforme strain ATCC 29133 and its response to an extract of a symbiotic plant partner Anthoceros punctatus. Mol Plant Microbe Interact 1997; 10:280–289 [View Article] [PubMed]
    [Google Scholar]
  30. Wong FCY, Meeks JC. Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. Microbiology 2002; 148:315–323 [View Article] [PubMed]
    [Google Scholar]
  31. Campbell EL, Meeks JC. Characteristics of hormogonia formation by symbiotic Nostoc spp. in response to the presence of Anthoceros punctatus or its extracellular products. Appl Environ Microbiol 1989; 55:125–131 [View Article]
    [Google Scholar]
  32. Duggan PS, Thiel T, Adams DG. Symbiosis between the cyanobacterium Nostoc and the liverwort Blasia requires a CheR-type MCP methyltransferase. Symbiosis 2013; 59:111–120 [View Article]
    [Google Scholar]
  33. Johansson C, Bergman B. Reconstitution of the symbiosis of Gunnera manicata Linden: cyanobacterial specificity. New Phytol 1994; 126:643–652 [View Article]
    [Google Scholar]
  34. Masson-Boivin C, Giraud E, Perret X, Batut J. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?. Trends Microbiol 2009; 17:458–466 [View Article] [PubMed]
    [Google Scholar]
  35. Aschenbrenner IA, Cardinale M, Berg G, Grube M. Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens?. Environ Microbiol 2014; 16:3743–3752 [View Article] [PubMed]
    [Google Scholar]
  36. Aschenbrenner IA, Cernava T, Erlacher A, Berg G, Grube M. Differential sharing and distinct co-occurrence networks among spatially close bacterial microbiota of bark, mosses and lichens‬‬. Mol Ecol 2017; 26:2826–2838 [View Article] [PubMed]
    [Google Scholar]
  37. Dijkhuizen LW, Brouwer P, Bolhuis H, Reichart G-J, Koppers N et al. Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveals endophytes that do not fix N2 but may denitrify. New Phytol 2018; 217:453–466 [View Article] [PubMed]
    [Google Scholar]
  38. Sigurbjörnsdóttir MA, Andrésson ÓS, Vilhelmsson O. Analysis of the Peltigera membranacea metagenome indicates that lichen-associated bacteria are involved in phosphate solubilization. Microbiology 2015; 161:989–996 [View Article] [PubMed]
    [Google Scholar]
  39. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics (Oxford, England) 2016; 32:3047–3048 [View Article] [PubMed]
    [Google Scholar]
  40. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9:357–359 [View Article] [PubMed]
    [Google Scholar]
  41. Nikolenko SI, Korobeynikov AI, Alekseyev MA. BayesHammer: Bayesian clustering for error correction in single-cell sequencing. BMC Genomics 2013; 14:S7 [View Article]
    [Google Scholar]
  42. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20:257 [View Article] [PubMed]
    [Google Scholar]
  43. Dabdoub S. kraken-biom: enabling interoperative format conversion for Kraken results (Version 1.2). In Kraken-Biom: Enabling Interoperative Format Conversion for Kraken Results (Version 1.2 2016
    [Google Scholar]
  44. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 2013; 8:e61217 [View Article] [PubMed]
    [Google Scholar]
  45. Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. Bioinformatics 2018; 299537 [View Article]
    [Google Scholar]
  46. Cameron ES, Schmidt PJ, Tremblay BJM, Emelko MB, Müller KM. Enhancing diversity analysis by repeatedly rarefying next generation sequencing data describing microbial communities. Sci Rep 2021; 11:22302 [View Article] [PubMed]
    [Google Scholar]
  47. Lahti L, Shetty S. Introduction to the microbiome R package; 2018
  48. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res 2017; 27:824–834 [View Article] [PubMed]
    [Google Scholar]
  49. Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015; 31:1674–1676 [View Article] [PubMed]
    [Google Scholar]
  50. Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016; 32:605–607 [View Article] [PubMed]
    [Google Scholar]
  51. Kang DD, Li F, Kirton E, Thomas A, Egan R et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019; 7:e7359 [View Article] [PubMed]
    [Google Scholar]
  52. Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol 2018; 3:836–843 [View Article]
    [Google Scholar]
  53. Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics 2022; 38:5315–5316 [View Article] [PubMed]
    [Google Scholar]
  54. Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat Methods 2023; 20:1203–1212 [View Article] [PubMed]
    [Google Scholar]
  55. Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol 2021; 38:4647–4654 [View Article] [PubMed]
    [Google Scholar]
  56. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J et al. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb Genom 2021; 7:000685 [View Article] [PubMed]
    [Google Scholar]
  57. Lee MD. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 2019; 35:4162–4164 [View Article] [PubMed]
    [Google Scholar]
  58. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 2021; 49:W293–W296 [View Article] [PubMed]
    [Google Scholar]
  59. Gautreau G, Bazin A, Gachet M, Planel R, Burlot L et al. PPanGGOLiN: depicting microbial diversity via a partitioned pangenome graph. PLoS Comput Biol 2020; 16:e1007732 [View Article] [PubMed]
    [Google Scholar]
  60. Ferrés I, Iraola G. An object-oriented framework for evolutionary pangenome analysis. Cell Rep Methods 2021; 1:100085 [View Article] [PubMed]
    [Google Scholar]
  61. Snipen L, Liland KH. micropan: an R-package for microbial pan-genomics. BMC Bioinformatics 2015; 16:1–8 [View Article]
    [Google Scholar]
  62. Shimoyama Y. COGclassifier: a tool for classifying prokaryote protein sequences into COG functional category; 2022
  63. Schloss PD. Rarefaction is currently the best approach to control for uneven sequencing effort in amplicon sequence analyses. Microbiology 20232023–06 [View Article]
    [Google Scholar]
  64. Kollmen J, Strieth D. The beneficial effects of cyanobacterial co-culture on plant growth. Life 2022; 12:223 [View Article] [PubMed]
    [Google Scholar]
  65. Strunecký O, Ivanova AP, Mareš J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J Phycol 2023; 59:12–51 [View Article] [PubMed]
    [Google Scholar]
  66. Kanesaki Y, Hirose M, Hirose Y, Fujisawa T, Nakamura Y et al. Draft genome sequence of the nitrogen-fixing and hormogonia-inducing Cyanobacterium Nostoc cycadae strain WK-1, isolated from the coralloid roots of Cycas revoluta. Genome Announc 2018; 6:10–1128 [View Article] [PubMed]
    [Google Scholar]
  67. Nelson JM, Hauser DA, Gudiño JA, Guadalupe YA, Meeks JC et al. Complete genomes of symbiotic cyanobacteria clarify the evolution of vanadium-nitrogenase. Genome Biol Evol 2019; 11:1959–1964 [View Article] [PubMed]
    [Google Scholar]
  68. Hirose Y, Ohtsubo Y, Misawa N, Yonekawa C, Nagao N et al. Genome sequencing of the NIES Cyanobacteria collection with a focus on the heterocyst-forming clade. DNA Res 2021; 28:dsab024 [View Article] [PubMed]
    [Google Scholar]
  69. Freitas S, Castelo-Branco R, Wenzel-Storjohann A, Vasconcelos VM, Tasdemir D et al. Structure and biosynthesis of desmamides A–C, lipoglycopeptides from the endophytic cyanobacterium Desmonostoc muscorum LEGE 12446. J Nat Prod 2022; 85:1704–1714 [View Article]
    [Google Scholar]
  70. Moraes LE, Blow MJ, Hawley ER, Piao H, Kuo R et al. Resequencing and annotation of the Nostoc punctiforme ATTC 29133 genome: facilitating biofuel and high-value chemical production. AMB Express 2017; 7:42 [View Article] [PubMed]
    [Google Scholar]
  71. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. The microbial pan-genome. Curr Opin Genet Dev 2005; 15:589–594 [View Article] [PubMed]
    [Google Scholar]
  72. Park SC, Lee K, Kim YO, Won S, Chun J. Large-scale genomics reveals the genetic characteristics of seven species and importance of phylogenetic distance for estimating pan-genome size. Front Microbiol 2019; 10:834 [View Article] [PubMed]
    [Google Scholar]
  73. Dodds WK, Gudder DA, Mollenhauer D. The ecology of Nostoc. J Phycol 1995; 31:2–18 [View Article]
    [Google Scholar]
  74. Bustos-Díaz ED, Barona-Gómez F, Cibrián-Jaramillo A. Cyanobacteria in nitrogen-fixing symbioses. In Cyanobacteria Academic Press; 2019 pp 29–42 [View Article]
    [Google Scholar]
  75. Bazin A, Gautreau G, Médigue C, Vallenet D, Calteau A. panRGP: a pangenome-based method to predict genomic islands and explore their diversity. Bioinformatics 2020; 36:i651–i658 [View Article] [PubMed]
    [Google Scholar]
  76. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003; 4:1–14 [View Article] [PubMed]
    [Google Scholar]
  77. Álvarez C, Brenes-Álvarez M, Molina-Heredia FP, Mariscal V. Quantitative proteomics at early stages of the symbiotic interaction between Oryza sativa and Nostoc punctiforme reveals novel proteins involved in the symbiotic crosstalk. Plant Cell Physiol 2022; 63:1433–1445 [View Article] [PubMed]
    [Google Scholar]
  78. Ekman M, Picossi S, Campbell EL, Meeks JC, Flores E. A Nostoc punctiforme sugar transporter necessary to establish a Cyanobacterium-plant symbiosis. Plant Physiol 2013; 161:1984–1992 [View Article] [PubMed]
    [Google Scholar]
  79. Cohen MF, Yamasaki H. Flavonoid-induced expression of a symbiosis-related gene in the cyanobacterium Nostoc punctiforme. J Bacteriol 2000; 182:4644–4646 [View Article] [PubMed]
    [Google Scholar]
  80. Liaimer A, Helfrich EJN, Hinrichs K, Guljamow A, Ishida K et al. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme. Proc Natl Acad Sci U S A 2015; 112:1862–1867 [View Article] [PubMed]
    [Google Scholar]
  81. Chen MY, Teng WK, Zhao L, Hu CX, Zhou YK et al. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J 2021; 15:211–227 [View Article] [PubMed]
    [Google Scholar]
  82. Zheng Q, Hu Y, Kosina SM, Van Goethem MW, Tringe SG et al. Conservation of beneficial microbes between the rhizosphere and the cyanosphere. New Phytol 2023; 240:1246–1258 [View Article] [PubMed]
    [Google Scholar]
  83. Liu J, Xu H, Wang Z, Liu J, Gong X. Core endophytic bacteria and their roles in the coralloid roots of cultivated Cycas revoluta (Cycadaceae). Microorganisms 2023; 11:2364 [View Article]
    [Google Scholar]
  84. Nelson JM, Hauser DA, Li FW. The diversity and community structure of symbiotic cyanobacteria in hornworts inferred from long-read amplicon sequencing. Am J Bot 2021; 108:1731–1744 [View Article] [PubMed]
    [Google Scholar]
  85. Wardell GE, Hynes MF, Young PJ, Harrison E. Why are rhizobial symbiosis genes mobile?. Phil Trans R Soc B 2022; 377:20200471 [View Article]
    [Google Scholar]
  86. Moreno-Pino M, Cristi A, Gillooly JF, Trefault N. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Sci Rep 2020; 10:645 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.001207
Loading
/content/journal/mgen/10.1099/mgen.0.001207
Loading

Data & Media loading...

Supplements

Supplementary material 1

EXCEL

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error